Place Value

EXAMPLE

One digit has a line under it. What is its place value?

Write its place name.

462

tens

Directions Write the place name for each underlined digit.

13. 90,78<u>8</u>

Directions Underline the digit of the place value given.

thousands

Number Knowledge

EXAMPLE

Read the numeral. Write the numeral in words.

seven hundred forty-five

Directions Write the name of the place for each underlined digit.

1. 1,981

5. 20,131,660

2. 438

6. 60,317

3. 5,627

7. 4,058,225

4. 506,271

8. 37,620

Directions Write each numeral in words.

- **9.** 163
- **10.** 127,426
- **11.** 706,045

Directions Round the following numbers to the nearest:

	Tens
12. 752	

Addition of Whole Numbers

EXAMPLE

Add.

Directions Add to find the sums.

Directions Write the numbers in a vertical line. Then add.

Addition and Subtraction

EXAMPLES

Add.

Subtract.

Directions Write the numbers in vertical form. Then add.

1.
$$5 + 16 + 84 =$$

Directions Rewrite the following subtraction problems in the vertical form. Then subtract.

6.
$$556 - 362 =$$

9.
$$4,003 - 266 =$$

Directions Read the word problems. Solve them. Include the correct units in your answer.

- **15.** Emma was in a mathematics contest. She did 60 addition problems. She did 15 multiplication problems. Then she did 28 division problems. How many problems did she do?
- **16.** The class bought 2,000 sandwiches for the graduation party. There are 302 sandwiches left. How many were eaten?

The Multiplication Table

×	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10
2	0	2	4	6	8	10	12	14	16	18	20
3	0	3	6	9	12	15	18	21	24	27	30
4	0	4	8	12	16	20	24	28	32	36	40
5	0	5	10	15	20	25	30	35	40	45	50
6	0	6	12	18	24	30	36	42	48	54	60
7	0	7	14	21	28	35	42	49	56	63	70
8	0	8	16	24	32	40	48	56	64	72	80
9	0	9	18	27	36	45	54	63	72	81	90
10	0	10	20	30	40	50	60	70	80	90	100

Multiplication Practice

EXAMPLE

Look at the number in the left column. Look at the number in the top row. Multiply them.

	6
3	18

Directions Fill in the multiplication table. Multiply each number in the left column by numbers on the top row. Write the product in the box.

- 1. X
- 2. \times

Basic Operations with Whole Numbers

EXAMPLES

Subtract. 3 11 7 14 A , 1 8 4 - 6 7 8 3 5 0 6

Divide. 153 3) 459 - 3 15 - 15 09 - 9

Directions Add.

1.
$$812 + 498 + 319 =$$

5.
$$50,603 + 7,006 + 30,200 + 1,021 =$$

Directions Subtract.

12.
$$300,060 - 137,502 =$$

Directions Multiply.

14.
$$205 \times 37 =$$

Directions Divide. Write the remainders as fractions.

8

Multiplication and Division

EXAMPLES

Multiply.

Divide.

Directions Write these problems in vertical form. Then multiply.

1.
$$61 \times 6 =$$

2.
$$215 \times 25 =$$

3.
$$4,034 \times 300 =$$

Directions Rewrite the following division problems in standard form. Then divide. Write any remainders as fractions.

4.
$$366 \div 6 =$$

5.
$$5,463 \div 9 =$$

6.
$$2,520 \div 18 =$$

Directions Solve the word problems. Include the correct unit with your answer.

- **7.** The high school makes 623 lunches every day. There are 180 school days in the year. How many lunches will the school make this year?
- **8.** Lakeshore School has 462 students. There are 22 students in each class. How many classes are there at Lakeshore?

Averages

EXAMPLE

Find the average of these numbers: 16, 43, 22, 19, 58, 31

Step 1 Add.

Step 2 Divide.

$$\begin{array}{r}
 31 \frac{3}{6} = 31 \frac{1}{2} \\
 5) 189 \\
 -18 \\
 09 \\
 -6 \\
 \hline
 3
\end{array}$$

Directions Find the average of each set of numbers. Show remainders as fractions.

Directions Use a calculator. Find the averages for each set of numbers. Read the answers with one decimal place.

Exponents

EXAMPLE

Read the number. Change the number into a problem. Write the amount.

$$2^3 = 2 \times 2 \times 2 = 8$$

Directions Write the following without exponents.

9.
$$6^3$$
 means _____

Directions Write these expressions without exponents.

18.
$$7^3 =$$

22.
$$18^2 =$$

26.
$$19^3 =$$

27.
$$25^3 =$$

30.
$$22^3 =$$

Averages, Exponents, and **Order of Operations**

EXAMPLE)

Follow the order of operations.

Directions Find the average of each set of numbers.

Average

2. 265, 300, 298, 275, 246

Average

3. 75, 75, 76, 77, 82

Average

4. 128, 133, 98

Average _____

Directions Write each as a multiplication problem.

Then find the product.

5.
$$11^4 =$$

6.
$$3^4 =$$

7.
$$10^4 =$$

Directions Find the answers. Do the operations in the correct order.

11.
$$14 + 8 \times 2 =$$

14.
$$5^2 + 8^2 \div 16 =$$

12.
$$14 - 18 \div 2 + 1 =$$

_____ **15.**
$$5^2 + 6 \times 6 \div 6^2 =$$

13.
$$5^3 - 8 \times 2 =$$

_____ **16.**
$$4 + 8 \times 5 \div 2^2 - 6 =$$

Factors

EXAMPLE

Factor the number.

$$\begin{array}{ccc} \mathsf{F}_{16} & & 1\times16 \\ & & 2\times8 \\ & & 4\times4 \end{array}$$

Circle the correct factors.

Directions Circle the factors for the given numbers.

Multiples

EXAMPLE

M₂ Find the multiples of 2.

$$2 \times 3 \qquad 2 \times 4 \\ 6 \qquad \qquad 8$$

Circle the multiples. 1, 2, 3, 4, 5, 6, 7, 8, 9

Directions Circle the correct multiples for the given numbers.

Prime and Composite Numbers

EXAMPLE

Identify all the factors.

$$F_3 = 1, 3$$

Name the number as prime or composite.

3 has two factors. It is a prime number.

Directions Circle the prime numbers.

Directions Circle the composite numbers.

Sets of Numbers

EXAMPLE

Find the set of even numbers. Even numbers are multiples of 2. 30, 31, 32, 33, 34, 35, 36, 37

Set of even numbers

30, 32, 34, 36

1. How many numbers in the set divide into 28 with no remainder? Write them.

(2, 3, 4, 5, 6, 7, 8, 9, 10)

2. Write the numbers from the set given that divide into 75 without a remainder.

(5, 10, 20, 25, 30, 35, 40, 50, 60, 70, 75)

3. Write the set of numbers that divides into 24 with no remainder. (1, 2, 4, 6, 8, 10, 12)

4. Use the set (2, 4, 6, 8, 10, 12, 18, 24, 25, 27). Write the multiples of 6.

5. Use the set (12, 16, 20, 22, 25, 28, 30, 42, 50). Write the multiples of 4.

6. Use the set (1, 2, 3, 4, 5, 12, 13, 14, 17, 20). Write the set of even numbers.

7. Use the set (1, 2, 3, 4, 5, 6, 7, 17, 18, 20). Write the set of odd numbers.

8. Use the set (0, 12, 24, 32, 48, 52, 60). Write the multiples of 12.

Hundred Chart: Finding Prime Numbers

Directions Use this chart to find prime numbers. See page 42 of the textbook.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Divisibility Tests

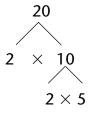
Use the divisibility test. Is this number divisible by 3?

177 Add the digits.

$$1 + 7 + 7 = 15$$

Determine if the sum is a multiple of 3. 15 is a multiple of 3. 177 is divisible by 3.

Directions Do divisibility tests. Complete the chart.


Write Yes or No for each space.

Number	Divisible By 2?	Divisible By 3?	Divisible By 5?	Divisible By 10?
1. 30,357				
2. 41,920				
3. 23,340				
4. 10,023				
5. 20,344				
6. 33,491				
7. 100,040				
8. 92,340				

Number	Divisible By 2?	Divisible By 4?	Divisible By 9?	Divisible By 10?
9. 46,125				
10. 41,500				
11. 254,709				
12. 15,880				
13. 23,324				
14. 10,080				
15. 67,510				
16. 82,440				

Prime Factorization

EXAMPLES

Directions Use factor trees to do the prime factorization of these composite numbers.

1. 30

4. 45

7. 48

2. 27

5. 24

8. 16

3. 72

6. 60

9. 17

Least Common Multiple

EXAMPLE

Find the LCM (2, 5).

 $M_2 = 2, 4, 6, 8, 10, 12$

 $M_5 = 5, 10, 15, 20, 25$

LCM(2, 5) = 10

Directions Look at the pairs of numbers.

Find their least common multiple (LCM).

Show your work.

1.

5.

LCM (7,9)	LCM (6, 8)
$M_7 =$	$M_6 =$
$M_9 =$	$M_8 =$
LCM(7,9) =	LCM(6,8) =

2.

6.

LCM (3, 15)	LCM (5, 6)
$M_3 =$	$M_5 =$
$M_{15} =$	$M_6 =$
LCM(3, 15) =	LCM(5,6) =

3.

7.

LCM (7, 4)	LCM (4, 6)
$M_7 =$	$M_4 =$
$M_4 =$	$M_6 =$
LCM(7,4) =	LCM (4, 6) =

4.

8.

LCM (6, 11)	LCM (11, 3)
$M_6 =$	$M_{11} =$
$M_{11} =$	$M_3 =$
LCM (6, 11) =	LCM (11, 3) =

Least Common Multiple/ Greatest Common Factor

EXAMPLES

$$M_5 = \{0, 5, \underline{10}, 15 \ldots\}$$

$$M_{10} = \{0, \underline{10}, 20, \ldots\}$$

$$LCM(5, 10) = 10$$

GCF (6, 12)

$$F_6 = \{1, 2, 3, \underline{6}\}$$

$$F_{12} = \{1, 2, \underline{6}, 12\}$$

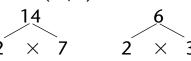
$$GCF(6, 12) = 6$$

Directions Find the least common multiple of these pairs of numbers.

Directions Find the greatest common factor of these pairs of numbers.

Finding Least Common Multiple and Greatest Common Factor

EXAMPLES


LCM (14, 6)

14
2 × 7
2 × 3

$$14 = 2 \times 7$$
 $6 = 2 \times 3$

$$2 \times 7 \times 3 = 42$$
 $100 \times 100 \times$

GCF (14, 6)

$$10 = 2 \times 7$$

$$GCF = 2$$

Directions Look at the pairs of numbers.

Find their least common multiple (LCM). Show your work.

1. Find the LCM (6, 25)

3. Find the LCM (7, 10)

2. Find the LCM (18, 4)

4. Find the LCM (9, 8)

Directions Look at the pairs of numbers.

Find their greatest common factor (GCF). Show your work.

5. GCF (15, 12)

7. GCF (14, 22)

6. GCF (9, 24)

8. GCF (25, 35)

Comparing Fractions

EXAMPLE

Cross-multiply numerators and denominators. Compare the products.

$$\frac{14}{2}$$
 $\frac{6}{3}$ $\frac{7}{7}$

$$\begin{array}{ccc}
 14 & 18 \\
 2 & 6 \\
 \hline
 3 & 7
 \end{array}$$

Directions Use the cross-product method. Write =, <, >for each expression. Show your work.

1.
$$\frac{1}{8}$$
 $\frac{3}{18}$

$$\frac{3}{18}$$

5.
$$\frac{10}{12}$$

$$\frac{11}{14}$$

9.
$$\frac{1}{1}$$

$$\frac{13}{15}$$

5.
$$\frac{10}{13}$$
 $\frac{11}{14}$ **9.** $\frac{11}{14}$ $\frac{13}{15}$ **13.** $\frac{14}{20}$ $\frac{15}{22}$

$$\frac{15}{22}$$

2.
$$\frac{5}{11}$$
 $\frac{9}{16}$ **6.** $\frac{22}{34}$ $\frac{14}{25}$ **10.** $\frac{30}{45}$ $\frac{15}{28}$ **14.** $\frac{16}{20}$

$$\frac{9}{16}$$

6.
$$\frac{22}{34}$$

$$\frac{14}{25}$$

10.
$$\frac{3}{4}$$

$$\frac{15}{28}$$

|4.
$$\frac{16}{20}$$

$$\frac{30}{40}$$

3.
$$\frac{22}{32}$$
 $\frac{32}{41}$ **7.** $\frac{13}{26}$ $\frac{4}{8}$ **11.** $\frac{16}{22}$ $\frac{7}{8}$ **15.** $\frac{23}{24}$ $\frac{21}{22}$

$$\frac{32}{41}$$

7.
$$\frac{13}{26}$$

$$\frac{4}{8}$$

11.
$$\frac{1}{2}$$

$$\frac{7}{8}$$

15.
$$\frac{23}{24}$$

$$\frac{21}{22}$$

4.
$$\frac{5}{11}$$

$$\frac{12}{23}$$

8.
$$\frac{11}{15}$$

$$\frac{9}{10}$$

4.
$$\frac{5}{11}$$
 $\frac{12}{23}$ **8.** $\frac{11}{15}$ $\frac{9}{10}$ **12.** $\frac{22}{23}$ $\frac{15}{16}$ **16.** $\frac{22}{25}$ $\frac{13}{14}$

$$\frac{15}{16}$$

16.
$$\frac{22}{25}$$

$$\frac{13}{14}$$

Changing Fractions to Higher Terms

EXAMPLE

Divide. Find out how many times one denominator goes into the other. Multiply the numerator and denominator by the quotient.

$$\frac{2}{3} = \frac{2}{15}$$
 Divide 15 by 3. 15 ÷ 3 = 5
$$\frac{2}{3} \times \frac{5}{5} = \frac{10}{15}$$

$$\frac{3}{4} = \frac{10}{15}$$

Directions Express these fractions in higher terms.

1.
$$\frac{3}{8} = \frac{3}{24}$$

6.
$$\frac{11}{20} = \frac{1}{60}$$

11.
$$\frac{17}{19} = \frac{17}{38}$$

16.
$$\frac{6}{22} = \frac{6}{44}$$

2.
$$\frac{7}{9} = \frac{7}{27}$$

7.
$$\frac{30}{31} = \frac{30}{124}$$

12.
$$\frac{18}{20} = \frac{1}{100}$$

17.
$$\frac{20}{25} = \frac{125}{125}$$

3.
$$\frac{4}{9} = \frac{4}{72}$$

8.
$$\frac{4}{8} = \frac{32}{32}$$

13.
$$\frac{15}{30} = \frac{1}{120}$$

18.
$$\frac{7}{16} = \frac{7}{32}$$

4.
$$\frac{12}{33} = \frac{12}{99}$$

9.
$$\frac{8}{9} = \frac{8}{63}$$

14.
$$\frac{7}{8} = \frac{7}{24}$$

19.
$$\frac{5}{13} = \frac{5}{52}$$

5.
$$\frac{52}{55} = \frac{165}{165}$$

10.
$$\frac{5}{9} = \frac{5}{45}$$

15.
$$\frac{13}{23} = \frac{1}{46}$$

20.
$$\frac{4}{8} = \frac{4}{40}$$

Fractions to Compare and Rename

EXAMPLE)

Express fractions in lowest terms. Divide the numerator and denominator by their largest common factor.

$$\frac{10}{12} = \frac{10 \div 2}{12 \div 2} = \frac{5}{6}$$

Directions Compare the fractions in each pair. Use < or >.

1.
$$\frac{3}{7}$$
 $\frac{5}{8}$

5.
$$\frac{4}{7}$$
 $\frac{7}{9}$

2.
$$\frac{9}{16}$$
 $\frac{3}{5}$

6.
$$\frac{2}{3}$$
 $\frac{9}{21}$

3.
$$\frac{5}{6}$$
 $\frac{6}{7}$

7.
$$\frac{4}{9}$$
 $\frac{6}{8}$

4.
$$\frac{5}{8}$$
 $\frac{7}{9}$

8.
$$\frac{4}{5}$$
 $\frac{7}{8}$

Directions Change these fractions to higher terms.

9.
$$\frac{5}{9} = \frac{5}{27}$$

11.
$$\frac{16}{17} = \frac{1}{34}$$

10.
$$\frac{6}{11} = \frac{6}{33}$$

12.
$$\frac{7}{8} = \frac{7}{64}$$

Directions Rename these fractions in simplest form.

13.
$$\frac{15}{20}$$
 = _____

15.
$$\frac{22}{46} =$$

14.
$$\frac{9}{51} =$$

14.
$$\frac{9}{51} =$$
 ______ **16.** $\frac{18}{24} =$ _____

Mixed Numbers

EXAMPLE

Rename 3 $\frac{3}{8}$ as an improper fraction. 3 \times 8 = 24 24 + 3 = 27 3 $\frac{3}{8}$ = $\frac{27}{8}$

$$3 \times 8 = 24$$

$$24 + 3 = 27$$

$$3\frac{3}{8} = \frac{27}{8}$$

Multiply the whole number by the denominator. Add the numerator. Write the new numerator over the same denominator.

Directions Write the mixed numbers as improper fractions.

1.
$$3\frac{7}{9} =$$
 ______ **4.** $27\frac{2}{3} =$ _____

4.
$$27\frac{2}{3} =$$

2.
$$2\frac{1}{4} =$$
 ______ **5.** $11\frac{2}{4} =$ _____

5.
$$11\frac{2}{4} =$$

3.
$$7\frac{5}{6} =$$

3.
$$7\frac{5}{6} =$$
 ______ **6.** $12\frac{3}{5} =$ _____

Directions Rename these improper fractions as mixed numbers in simplest form.

7.
$$\frac{14}{5} =$$

7.
$$\frac{14}{5} =$$
 ______ **10.** $\frac{32}{9} =$ _____

8.
$$\frac{29}{6} =$$

9.
$$\frac{77}{10} =$$

Directions Rename these mixed numbers in simplest form.

13.
$$4\frac{32}{64} =$$

13.
$$4\frac{32}{64} =$$

14.
$$5\frac{21}{4} =$$

14.
$$5\frac{21}{4} =$$

Renaming Improper Fractions

EXAMPLE)

Divide the numerator by the denominator. Write the fractions as mixed numbers. Simplify if necessary.

$$\frac{32}{10}$$

$$\begin{array}{r}
 3 \\
 \hline
 10)32 \\
 \hline
 -30 \\
 \hline
 2
 \end{array}$$

Solution: $3\frac{2}{10}$ or $3\frac{1}{5}$

Directions Write the improper fractions as whole or mixed numbers.

1.
$$\frac{16}{5}$$

7.
$$\frac{66}{22}$$

1.
$$\frac{16}{5}$$
 _____ **7.** $\frac{66}{22}$ _____ **13.** $\frac{85}{9}$ _____ **19.** $\frac{34}{17}$ _____

19.
$$\frac{34}{17}$$

2.
$$\frac{46}{7}$$

8.
$$\frac{77}{66}$$

2.
$$\frac{46}{7}$$
 20. $\frac{40}{13}$ **20.** $\frac{40}{13}$

20.
$$\frac{40}{13}$$

3.
$$\frac{39}{12}$$

9.
$$\frac{23}{12}$$

3.
$$\frac{39}{12}$$
 _____ **9.** $\frac{23}{12}$ _____ **15.** $\frac{47}{40}$ _____ **21.** $\frac{45}{3}$ _____

21.
$$\frac{45}{3}$$

4.
$$\frac{40}{6}$$

10.
$$\frac{66}{9}$$

4.
$$\frac{40}{6}$$
 _____ **10.** $\frac{66}{9}$ _____ **16.** $\frac{67}{6}$ _____ **22.** $\frac{35}{15}$ _____

22.
$$\frac{35}{15}$$

5.
$$\frac{29}{5}$$

11.
$$\frac{56}{8}$$

5.
$$\frac{29}{5}$$
 _____ **11.** $\frac{56}{8}$ _____ **17.** $\frac{34}{11}$ _____ **23.** $\frac{15}{2}$ _____

23.
$$\frac{15}{2}$$

6.
$$\frac{45}{8}$$

12.
$$\frac{72}{10}$$

6.
$$\frac{45}{8}$$
 _____ **12.** $\frac{72}{10}$ _____ **18.** $\frac{17}{10}$ _____ **24.** $\frac{122}{121}$ _____

24.
$$\frac{122}{121}$$

Writing Mixed Numbers in Simplest Form

EXAMPLE)

Rename the mixed number in its simplest form.

$$10\frac{21}{9} = 10 + \frac{21}{9} = 10 + 2\frac{3}{9} = 12\frac{3}{9} = 12\frac{1}{3}$$

Directions Write these mixed numbers in simplest form.

1.
$$4\frac{19}{8}$$

8.
$$6\frac{8}{5}$$

1.
$$4\frac{19}{8}$$
 _____ **8.** $6\frac{8}{5}$ _____ **15.** $10\frac{3}{2}$ _____ **22.** $13\frac{9}{4}$ _____

22.
$$13\frac{9}{4}$$

2.
$$12\frac{28}{14}$$

9.
$$5\frac{53}{7}$$

2.
$$12\frac{28}{14}$$
 9. $5\frac{53}{7}$ **16.** $21\frac{7}{6}$ **23.** $12\frac{32}{11}$

23.
$$12\frac{32}{11}$$

3.
$$4\frac{18}{7}$$

10.
$$8\frac{12}{11}$$

3.
$$4\frac{18}{7}$$
 _____ **10.** $8\frac{12}{11}$ _____ **17.** $7\frac{8}{5}$ _____ **24.** $22\frac{9}{5}$ _____

24.
$$22\frac{9}{5}$$

4.
$$12\frac{3}{3}$$

11.
$$7\frac{13}{12}$$

4.
$$12\frac{3}{3}$$
 _____ **11.** $7\frac{13}{12}$ _____ **18.** $5\frac{34}{10}$ _____ **25.** $19\frac{15}{14}$ _____

25.
$$19\frac{15}{14}$$

5.
$$4\frac{20}{19}$$

12.
$$6\frac{36}{24}$$

5.
$$4\frac{20}{19}$$
 _____ **12.** $6\frac{36}{24}$ _____ **19.** $37\frac{23}{8}$ _____ **26.** $2\frac{21}{10}$ _____

26. 2
$$\frac{21}{10}$$

6.
$$30\frac{43}{10}$$

6.
$$30\frac{43}{10}$$
 20. $18\frac{34}{15}$ **27.** $15\frac{26}{13}$

20. 18
$$\frac{34}{15}$$

27.
$$15\frac{26}{13}$$

7.
$$9\frac{13}{2}$$

14.
$$7\frac{22}{11}$$

7.
$$9\frac{13}{2}$$
 _____ **21.** $5\frac{15}{14}$ _____ **28.** $17\frac{42}{12}$ _____

Multiplying Fractions

EXAMPLE)

Multiply numerators. Multiply denominators. Simplify if necessary.

$$\frac{7}{8} \times \frac{1}{14} = \frac{7 \times 1}{8 \times 14} = \frac{7}{112} = \frac{1}{16}$$

Directions Multiply these fractions. Simplify your answers.

1.
$$\frac{2}{3} \times \frac{5}{9}$$

6.
$$\frac{20}{6} \times \frac{6}{10}$$

1.
$$\frac{2}{3} \times \frac{5}{9}$$
 11. $\frac{9}{10} \times \frac{4}{9}$ **11.** $\frac{9}{10} \times \frac{4}{9}$ **11.** $\frac{9}{10} \times \frac{4}{9}$

2.
$$\frac{7}{8} \times \frac{2}{5}$$

7.
$$\frac{4}{14} \times \frac{7}{8}$$

2.
$$\frac{7}{8} \times \frac{2}{5}$$
 7. $\frac{4}{14} \times \frac{7}{8}$ **12.** $\frac{17}{6} \times \frac{10}{18}$ **12.**

3.
$$\frac{12}{26} \times \frac{13}{18}$$

3.
$$\frac{12}{26} \times \frac{13}{18}$$
 8. $\frac{2}{15} \times \frac{5}{8}$ **13.** $\frac{11}{12} \times \frac{15}{22}$ **...**

13.
$$\frac{11}{12} \times \frac{15}{22}$$

4.
$$\frac{7}{9} \times \frac{2}{9}$$

9.
$$\frac{4}{3} \times \frac{12}{16}$$

4.
$$\frac{7}{9} \times \frac{2}{9}$$
 _____ **9.** $\frac{4}{3} \times \frac{12}{16}$ _____ **14.** $\frac{7}{3} \times \frac{7}{8}$ _____

5.
$$\frac{2}{7} \times \frac{5}{9}$$

5.
$$\frac{2}{7} \times \frac{5}{9}$$
 _____ **10.** $\frac{6}{8} \times \frac{8}{12}$ _____ **15.** $\frac{23}{25} \times \frac{2}{3}$ _____

15.
$$\frac{23}{25} \times \frac{2}{3}$$

Multiplying Mixed Numbers

EXAMPLE

Change mixed numbers to improper fractions. Multiply. Simplify if necessary.

$$2\frac{3}{8} \times \frac{2}{3} =$$

$$\frac{19}{8} \times \frac{2}{3} = \frac{38}{24} = 1\frac{14}{24} = 1\frac{7}{12}$$

Directions Multiply these mixed numbers. Show your work.

1.
$$2\frac{1}{2} \times 3\frac{1}{3}$$

5.
$$\frac{2}{7} \times 1\frac{3}{4}$$

9.
$$1\frac{1}{2} \times 2\frac{3}{4}$$

2.
$$4\frac{1}{8} \times 2\frac{2}{9}$$

6.
$$2\frac{3}{4} \times 2\frac{1}{2}$$

10.
$$\frac{3}{4} \times 2 \frac{1}{2}$$

3.
$$2\frac{2}{3}\times 1\frac{3}{4}$$

7.
$$1\frac{1}{2} \times 3\frac{1}{4}$$

11.
$$1\frac{1}{2} \times 3\frac{4}{5}$$

4.
$$\frac{3}{4} \times 1\frac{5}{6}$$

8.
$$2\frac{3}{4} \times \frac{3}{6}$$

12.
$$2\frac{2}{3} \times 3\frac{1}{2}$$

Dividing Fractions

EXAMPLE

Invert the divisor. Multiply. Simplify if necessary.

$$\frac{4}{5} \div \frac{9}{10} = \frac{4}{5} \times \frac{10}{9} = \frac{40}{45} = \frac{8}{9}$$

Directions Divide these fractions. Always invert the divisor. Show your work.

1.
$$\frac{5}{8} \div \frac{2}{5}$$

6.
$$\frac{3}{10} \div \frac{6}{15}$$

11.
$$\frac{10}{12} \div \frac{25}{24}$$

2.
$$\frac{3}{10} \div \frac{6}{13}$$

7.
$$\frac{3}{8} \div \frac{5}{6}$$

12.
$$\frac{9}{10} \div \frac{1}{5}$$

3.
$$\frac{5}{7} \div \frac{6}{8}$$

8.
$$\frac{11}{13} \div \frac{12}{26}$$

13.
$$\frac{3}{4} \div \frac{2}{7}$$

4.
$$\frac{1}{8} \div \frac{2}{4}$$

9.
$$\frac{3}{5} \div \frac{6}{7}$$

14.
$$\frac{7}{9} \div \frac{3}{9}$$

5.
$$\frac{11}{12} \div \frac{5}{6}$$

10.
$$\frac{9}{18} \div \frac{1}{9}$$

15.
$$\frac{3}{11} \div \frac{7}{22}$$

Multiplying and Dividing Fractions

EXAMPLES

Multiply.

$$\frac{4}{9} \times 1 \frac{1}{9} = \frac{4}{9} \times \frac{10}{9} = \frac{40}{81}$$

Divide.

$$3\frac{1}{6} \div \frac{1}{3} = \frac{19}{26} \times \frac{3}{1} = \frac{19}{2} = 9\frac{1}{2}$$

Directions Multiply. Write your answers in simplest form.

1.
$$\frac{4}{9} \times \frac{2}{7} =$$

1.
$$\frac{4}{9} \times \frac{2}{7} =$$
 ______ **5.** $1\frac{1}{5} \times \frac{2}{3} =$ _____

2.
$$\frac{9}{14} \times \frac{2}{3} =$$

2.
$$\frac{9}{14} \times \frac{2}{3} =$$
 6. $2\frac{3}{4} \times \frac{1}{2} =$

3.
$$\frac{8}{9} \times \frac{15}{16} =$$

3.
$$\frac{8}{9} \times \frac{15}{16} =$$
 7. $5\frac{2}{3} \times \frac{9}{10} =$

4.
$$\frac{11}{12} \times \frac{21}{33} =$$
 8. $3\frac{1}{7} \times 1\frac{2}{3} =$

8.
$$3\frac{1}{7} \times 1\frac{2}{3} =$$

Directions Divide. Write your answers in simplest form.

9.
$$\frac{3}{8} \div \frac{4}{9} =$$

9.
$$\frac{3}{8} \div \frac{4}{9} =$$
 ______ **13.** $2\frac{2}{5} \div \frac{12}{13} =$ _____

10.
$$\frac{3}{4} \div \frac{6}{20} =$$
 _______ **14.** $1\frac{3}{5} \div \frac{8}{15} =$ ______

14.
$$1\frac{3}{5} \div \frac{8}{15} =$$

11.
$$\frac{7}{11} \div \frac{3}{3} =$$

11.
$$\frac{7}{11} \div \frac{3}{3} =$$
 ______ **15.** $3\frac{2}{5} \div 1\frac{1}{2} =$ _____

12.
$$\frac{6}{7} \div \frac{15}{14} =$$
 16. $1\frac{1}{2} \div 1\frac{1}{2} =$

16.
$$1\frac{1}{2} \div 1\frac{1}{2} =$$

Adding with Like Denominators

EXAMPLE

Add numerators. Keep the denominator.

Directions Add these fractions and mixed numbers. Add the numerators when the denominators are the same.

1.
$$\frac{6}{11} + \frac{4}{11}$$

6.
$$\frac{7}{9}$$
 + $\frac{1}{9}$

11.
$$\frac{2}{5}$$
 + $\frac{2}{5}$

2.
$$\frac{9}{17} + \frac{6}{17}$$

7.
$$\frac{6}{13}$$
 + $\frac{3}{13}$

12.
$$\frac{11}{16}$$
 $+ \frac{4}{16}$

3.
$$\frac{8}{17} + \frac{5}{17}$$

8.
$$\frac{12}{23}$$
 + $\frac{11}{23}$

13.
$$\frac{3}{8} + \frac{5}{8}$$

4.
$$3 \frac{4}{17} + 2 \frac{5}{17}$$

9.
$$6\frac{8}{9} + 1\frac{1}{9}$$

14.
$$9 \frac{3}{8} + 2 \frac{6}{8}$$

5.
$$4\frac{5}{19} + 2\frac{3}{19}$$

10.
$$3\frac{2}{8} + 5\frac{1}{8}$$

15.
$$1 \frac{5}{9} + 5 \frac{3}{9}$$

Adding with Unlike Denominators

EXAMPLE

To add, find the least common multiple of the denominators. Raise the fraction to higher terms. Add.

$$\frac{\frac{2}{3}}{+\frac{1}{8}} = \frac{\frac{16}{24}}{\frac{3}{24}}$$

$$\frac{\frac{19}{24}}{\frac{19}{24}}$$

Directions Add these mixed numbers and fractions. Simplify your answers.

1.
$$\frac{\frac{5}{6}}{\frac{5}{12}}$$

6.
$$6\frac{1}{8}$$
 + $2\frac{3}{16}$

11.
$$9 \frac{11}{12} + \frac{5}{24}$$

2.
$$\frac{1}{7}$$
 + $\frac{3}{14}$

7.
$$3\frac{17}{35}$$
 + $1\frac{1}{7}$

12.
$$\frac{6}{11}$$
 + $4\frac{1}{7}$

3.
$$5\frac{2}{7}$$
 + $2\frac{7}{11}$

8.
$$4\frac{5}{6}$$
 $+ 5\frac{2}{7}$

13.
$$7\frac{3}{7}$$
 + $1\frac{2}{9}$

4. 6
$$\frac{2}{5}$$
 + 2 $\frac{8}{13}$

9.
$$1\frac{5}{9} + 5\frac{1}{4}$$

14.
$$8\frac{1}{6} + 2\frac{2}{7}$$

5.
$$3\frac{10}{66}$$
 + $4\frac{1}{3}$

10.
$$1 \frac{2}{7} + 6 \frac{1}{12}$$

15.
$$11\frac{8}{15} + 5\frac{1}{10}$$

Subtraction with Like Denominators

EXAMPLE

Subtract numerators. Keep denominators. Simplify if necessary.

$$\frac{\frac{7}{8}}{-\frac{3}{8}} = \frac{1}{2}$$

Directions Subtract these mixed numbers. Simplify your answers.

1.
$$1 \frac{3}{4}$$
 $- \frac{1}{4}$

6.
$$10 \frac{11}{13}$$
 $- 5 \frac{10}{13}$

11.
$$7 \frac{13}{14}$$
 $- 1 \frac{11}{14}$

2.
$$5 \frac{9}{10}$$
 $- \frac{2}{10}$

7.
$$12 \frac{10}{17}$$
 $- 11 \frac{15}{17}$

12.
$$22 \frac{17}{21}$$
 $-12 \frac{12}{21}$

3.
$$10 \frac{7}{10}$$
 $- 4 \frac{2}{10}$

8.
$$15 \frac{16}{19} - 10 \frac{12}{19}$$

13.
$$31 \frac{26}{27} - 21 \frac{20}{27}$$

$$4. \qquad 6 \frac{9}{13} \\ -2 \frac{3}{13}$$

9.
$$13 \frac{10}{13}$$
 $-12 \frac{1}{13}$

14.
$$16 \frac{11}{12}$$
 $-12 \frac{4}{12}$

10.
$$16 \frac{11}{24}$$
 $- 1 \frac{6}{24}$

15.
$$18 \frac{7}{15}$$

$$-10 \frac{1}{15}$$

Subtraction with Unlike Denominators

EXAMPLE

To subtract unlike denominators, find the least common multiple of the denominators. Raise the fraction to higher terms and subtract.

$$\begin{array}{rcl}
2\frac{1}{4} & = & 2\frac{3}{12} \\
-1\frac{1}{6} & = & -1\frac{2}{12} \\
\hline
& & & & \\
\hline
& & & & \\
1\frac{1}{12}
\end{array}$$

Directions Subtract these mixed numbers. Simplify your answers.

1.
$$8\frac{2}{3}$$
 $-\frac{1}{6}$

6.
$$\frac{12}{13}$$
 $-\frac{3}{26}$

11.
$$5 \frac{9}{14}$$
 $-2 \frac{3}{7}$

$$\begin{array}{cccc} \textbf{2.} & 4 & \frac{10}{33} \\ & -2 & \frac{2}{11} \end{array}$$

7.
$$20 \frac{8}{9}$$
 $-14 \frac{1}{5}$

12.
$$28 \frac{17}{20}$$
 $-20 \frac{4}{5}$

3.
$$10 \frac{15}{44}$$
 $- 7 \frac{2}{11}$

8.
$$7 \frac{13}{20} - 6 \frac{1}{5}$$

13.
$$19\frac{33}{34}$$
 $-4\frac{3}{17}$

4.
$$21\frac{26}{27}$$
 $-2\frac{1}{2}$

9.
$$32 \frac{24}{35}$$
 $-19 \frac{2}{3}$

14.
$$7 \frac{18}{22}$$
 $-4 \frac{2}{3}$

5.
$$34 \frac{14}{23}$$
 $- 4 \frac{1}{2}$

10.
$$45 \frac{27}{30}$$
 $-12 \frac{1}{4}$

15.
$$9 \frac{23}{26} - 5 \frac{3}{4}$$

Adding and Subtracting Fractions

EXAMPLES

Add or subtract.

Write your answers in simplest form.

$$4\frac{1}{8} = 4\frac{1}{8}$$

$$+ 1\frac{3}{4} = +1\frac{6}{8}$$

$$5\frac{7}{8}$$

$$1\frac{7}{10} = 1\frac{28}{40}$$
$$-\frac{1}{8} = -\frac{5}{40}$$
$$1\frac{23}{40}$$

Directions Add. Write your answers in simplest form.

1.
$$\frac{\frac{4}{21}}{+\frac{17}{21}}$$

3.
$$\frac{2}{9}$$
 + $\frac{1}{9}$

5.
$$6\frac{1}{2} + 3\frac{2}{3}$$

2.
$$\frac{\frac{7}{13}}{+\frac{5}{13}}$$

4.
$$5\frac{2}{5}$$
 $+ 3\frac{3}{5}$

6.
$$5\frac{2}{7} + 3\frac{2}{3}$$

Directions Subtract. Write your answers in simplest form.

7.
$$\frac{\frac{7}{8}}{-\frac{3}{8}}$$

10.
$$4\frac{3}{4}$$
 $-2\frac{1}{5}$

13.
$$9\frac{1}{6}$$
 $-2\frac{1}{9}$

8.
$$\frac{5}{11}$$
 $-\frac{3}{11}$

11.
$$6\frac{7}{8}$$
 $-3\frac{2}{7}$

14.
$$4\frac{3}{5}$$
 $-2\frac{4}{5}$

9.
$$\frac{13}{15}$$
 $-\frac{8}{15}$

12.
$$8\frac{5}{15}$$
 $-2\frac{3}{4}$

15. 5
$$-2\frac{7}{13}$$

Basic Operations with Fractions and Mixed Numbers

EXAMPLES

Add. Simplify if necessary.

$$2\frac{4}{11} \\ + 6\frac{3}{11} \\ \hline 8\frac{7}{11}$$

Subtract. Simplify if necessary.

$$2\frac{3}{4} = 2\frac{9}{12}$$

$$-1\frac{2}{3} = -1\frac{8}{12}$$

$$1\frac{1}{12}$$

Multiply. Simplify if necessary.

$$\frac{2}{9} \times \frac{3}{4} = \frac{6}{36} = \frac{1}{6}$$

Divide. Simplify if necessary.

$$2\frac{3}{4} = 2\frac{9}{12} \quad \frac{2}{9} \times \frac{3}{4} = \frac{6}{36} = \frac{1}{6} \quad \frac{7}{10} \div \frac{4}{9} = \frac{7}{10} \times \frac{9}{4} = \frac{7}{10} \times \frac{9}{10} = \frac{7}{10} \times \frac{9}{10} = \frac{1}{10} \times \frac{9}{10} = \frac{$$

Directions Add.

1.
$$2\frac{1}{4} + 4\frac{1}{4} =$$
 ______ **4.** $3\frac{2}{7} + 1\frac{9}{14} =$ _____

2.
$$6\frac{3}{5} + 2\frac{1}{5} =$$
 ______ **5.** $3\frac{5}{6} + 1\frac{1}{8} =$ _____

3.
$$2\frac{1}{10} + \frac{3}{5} =$$
 6. $4\frac{1}{9} + 2\frac{2}{3} =$

4.
$$3\frac{2}{7} + 1\frac{9}{14} =$$

5.
$$3\frac{5}{6} + 1\frac{1}{8} =$$

6.
$$4\frac{1}{9} + 2\frac{2}{3} =$$

Directions Subtract.

7.
$$2\frac{2}{3} - 1\frac{1}{6} =$$
 ______ **10.** $6\frac{5}{8} - \frac{2}{4} =$ _____

8.
$$6\frac{7}{15} - 3\frac{1}{3} =$$
 ______ **11.** $38\frac{3}{5} - \frac{1}{9} =$ _____

9.
$$3\frac{7}{10} - \frac{2}{5} =$$

10.
$$6\frac{5}{8} - \frac{2}{4} =$$

11.
$$38\frac{3}{5} - \frac{1}{9} =$$

9.
$$3\frac{7}{10} - \frac{2}{5} =$$
 12. $24\frac{5}{6} - 9\frac{7}{12} =$

Directions Multiply.

13.
$$\frac{4}{9} \times \frac{3}{8} =$$

14.
$$\frac{7}{15} \times \frac{30}{42} =$$
 ______ **17.** $1\frac{2}{3} \times 1\frac{1}{5} =$ _____

15.
$$\frac{3}{4} \times \frac{2}{5} =$$

16.
$$175 \times 1\frac{1}{4} =$$

17.
$$1\frac{2}{3} \times 1\frac{1}{5} =$$

_____ **18.**
$$2\frac{2}{3} \times 1\frac{1}{8} =$$

Directions Divide.

19.
$$\frac{5}{9} \div \frac{10}{27} =$$
 22. $5\frac{1}{2} \div \frac{7}{8} =$ _____

20.
$$\frac{3}{8} \div \frac{9}{32} =$$
 23. $7\frac{1}{2} \div 4\frac{1}{2} =$ _____

21.
$$\frac{8}{15} \div \frac{4}{5} =$$
 24. $3\frac{1}{5} \div 6 =$

22.
$$5\frac{1}{2} \div \frac{7}{8} =$$

23.
$$7\frac{1}{2} \div 4\frac{1}{2} =$$

24.
$$3\frac{1}{5} \div 6 =$$
 __

Place Value

EXAMPLE

Look at the digit with the line under it. Write its place name.

4.631 hundredths

Directions Write the name of the place for each underlined digit.

- **1.** 0.0<u>2</u>
- **2.** 4.<u>6</u>131
- **3.** 12.011
- **4.** 9.0<u>0</u>3
- **5.** 1023.9<u>1</u>
- **6.** 20.0<u>1</u>012
- **7.** 7.1<u>4</u>314
- **8.** 45.6<u>7</u>
- **9.** 0.00<u>2</u>23456 _____
- **10.** 0.002<u>3</u>4
- **11.** 1.2034<u>5</u>
- **12.** 801.0091<u>2</u>

- **13.** 4.2<u>3</u>1
- **14.** 51.<u>2</u>341
- **15.** 34.0145<u>6</u>
- **16.** 1.<u>2</u>341
- **17.** 0.023<u>0</u>5
- **18.** 0.<u>0</u>2304
- **19.** 1.<u>1</u>00002
- **20.** 112.398<u>2</u>
- **21.** 3.<u>4</u>45078 **22.** 54.<u>1</u>920
- **23.** 0.010123
- **24.** 2.000001

Directions Underline the place value named.

- **25.** 6.21111 ten-thousandths
- **26.** 0.101021 thousandths
- **27.** 5.055444 hundred-thousandths
- 28. 120.00023 hundred-thousandths
- **29.** 1502.033 hundredths

- **30.** 12.01 tenths
- **31.** 1203.002345 hundred-thousandths
- **32.** 1293.01 tenths
- **33.** 300.003 thousandths
- **34.** 345.000212 millionths

Reading and Writing Decimals

1		`
(EXAMPLE	
\		

Start at the left. Write the word for the numerals. Use and to stand for the decimal point.

one and fourteen hundredths

Directions Write the following numerals in words.

- **1.** 15.61
- **2.** 7.9
- **3.** 23.002
- **4.** 1.24
- **5.** 203.203
- **6.** 17.0231
- **7.** 67.0081
- **8.** 2.09
- **9.** 0.7
- **10.** 500.02061
- **11.** 456.01
- **12.** 4.0020
- **13.** 6.01
- **14.** 23.0102
- **15.** 102.009

Writing and Comparing Decimals

EXAMPLE

Order numbers from least to greatest.

4.211 4.20 0.42

0.42

4.2

Greatest 4.211

Directions Write the name of the place for each underlined digit.

1. 0.0<u>4</u>1

4. 29.645504

2. 0.0012

5. 2.2

3. 506.7<u>4</u>472

6. 2.3<u>3</u>044

Directions Write the following numerals in words.

- **7.** 2.46
- **8.** 5.9

Directions Write a numeral for each.

9. Sixteen and thirty-six thousandths

10. Three thousand and four hundred-thousandths

Directions Arrange each set in order from least to greatest.

- **11.** 1.2011 1.0211 0.122
- **12.** 0.912 0.844 0.099
- **13.** 0.6564 0.6549 0.6509 _____
- **14.** 0.1010 0.1002 0.1022 _____ ____
- **15.** 0.0301 0.0300 0.3001 _____ ___

6.5

2.

0.18

Chapter 4, Lesson 4

Adding Decimals

EXAMPLE

Write the problem in vertical form. Then add.

$$6.5 + 2 + 0.18 + 15 =$$

$$\begin{array}{r}
6.5 \\
2. \\
0.1 \\
+ 15.
\end{array}$$

Directions Write these decimal numerals vertically. Then add. Check your work. Use zeros for proper place value placement.

1.
$$1 + 6.21 + 0.12$$

5.
$$20 + 6.02 + 2.1$$

9.
$$3.5 + 0.6 + 3.0334$$

2.
$$9 + 6.1 + 2.31 + 0.1$$

6.
$$0.06 + 9 + 2.3 + 2.41$$

10.
$$89 + 23.02 + 0.003$$

3.
$$3.44 + 0.1 + 5 + 2.4$$

7.
$$0.034 + 6 + 23 + 4.5$$

11.
$$6.001 + 8 + 2 + 0.2$$

8.
$$2.003 + 52 + 6 + 3.58$$
 12. $90.03 + 4 + 0.445$

Rounding, Adding, and Subtracting Decimals

EXAMPLE

Write the problem in vertical form. Then subtract.

$$1.65 - 0.48 = 515 \\
1.65 \\
- 0.48 \\
\hline
1.17$$

Directions Round the following decimals to the nearest:

Tenth

Hundredth

Thousandth

4.489

1.

4. _____

7. _____

2.16666

2. _____

5. _____

8. _____

9.17638

3. _____

6. _____

9. _____

Directions Rewrite the following in vertical form. Then add.

10. 4.2 + 1.21 + 6 =

11. 0.72 + 4.8 + 0.21025 =

12. 450 + 0.004 + 4.5 =

13. 2.36 + 0.99 + 54 + 3.4 =

14. 47.4 + 0.0394 + 4.05 =

15. 23.4 + 4 + 95.9 =

Directions Rewrite the following in vertical form.

Then subtract.

16. 1.982 - 1.71802 = _____

19. 4.506 - 2.04 =

17. 5.62 - 0.412 = _____

20. 0.12 - 0.0948 =

18. 0.1 - 0.01 =

21. 45 - 0.708 =

Multiplication of Decimals

EXAMPLE

Write the problem in vertical form.

Then multiply. Remember the decimal point.

$$1.5 \times 0.21 =$$

$$\begin{array}{r}
1.5 \\
\times .21 \\
\hline
15 \\
+ 30 \\
\hline
0.315
\end{array}$$

Directions Rewrite the following problems in vertical form. Then multiply.

1.
$$1.62 \times 7.189 =$$

6.
$$8 \times 0.402 =$$

11.
$$0.879 \times 0.039 =$$

2.
$$2.40 \times 0.51 =$$

7.
$$0.402 \times 0.08 =$$

12.
$$19.82 \times 3.14 =$$

3.
$$0.694 \times 0.023 =$$

8.
$$216.4 \times 3.013 =$$

13.
$$0.7465 \times 1.934 =$$

4.
$$4.1602 \times 0.0003 =$$

9.
$$2.3 \times 0.9 =$$

14.
$$3.05 \times 0.34 =$$

5.
$$16 \times 4.49 =$$

10.
$$1.004 \times 0.71 =$$

15.
$$8,709 \times 0.038 =$$

44

Scientific Notation with Whole Numbers

EXAMPLE

Write in scientific notation.

$$0.01243 = 0.01.2 \cdot 243 = 1.243 \times 10^{-2}$$

Directions Express these numbers in scientific notation.

EXAMPLE

Write in standard form.

$$3.10 \times 10^{-3} = 0$$
 $\underbrace{0}_{3}$ $\underbrace{0}_{2}$ $\underbrace{3}_{1}$ $\underbrace{1}_{1}$ $0 = 0.00310$

Directions Express without exponents.

13.
$$2.3 \times 10^3 =$$

14.
$$2.01 \times 10^{-2} =$$

15.
$$9 \times 10^5 =$$

16.
$$5.7 \times 10^2 =$$

17.
$$8 \times 10^2 =$$

18.
$$2 \times 10^4 =$$

19.
$$2.3 \times 10^{-5} =$$

20.
$$4.02 \times 10^{-2} =$$

21.
$$5.6 \times 10^{-7} =$$

22.
$$4.44 \times 10^{-4} =$$

23.
$$6 \times 10^{-8} =$$

24.
$$8 \times 10^{-3} =$$

Decimal Operations

EXAMPLES

Add. 1.6 + 6.19 Subtract.

Multiply.

Divide.

$$\begin{array}{r}
11.54 \\
6)69.24 \\
-\underline{6} \\
09 \\
-\underline{6} \\
32 \\
-\underline{30} \\
24 \\
-\underline{24}
\end{array}$$

Directions Add.

1.
$$6 + 3.2 + 19 =$$

3.
$$3.9 + 5 + 0.09 =$$

5.
$$41.4 + 56 + 0.005 =$$

6.
$$4.5 + 1.1 + 4 =$$

Directions Subtract.

Directions Multiply.

14.
$$4.56 \times 4.51 =$$

16.
$$5.6 \times 0.33 =$$

Directions Divide.

22.
$$24.44 \div 5.2 =$$

23.
$$7.392 \div 0.88 =$$

Decimals to Fractions

EXAMPLE

Write 0.5 as a fraction. Simplify if necessary.

$$0.5 = \frac{5}{10} = \frac{1}{2}$$

Directions Rewrite each decimal as a fraction or mixed number. Simplify the answers to the lowest terms.

1.	0.19	

21. 0.23

36. 0.111

5. 2.355

Division of Decimals

EXAMPLE

Write in standard form. Move decimal. Divide $33.6 \div 0.6 =$

$$\begin{array}{r}
56 \\
0.6)33.6 \\
-30 \\
36 \\
-36 \\
0
\end{array} = 56$$

Directions Rewrite in standard form. Divide.

6.
$$1,023.4 \div 0.34 =$$

4.
$$0.6771 \div 0.061 =$$

4.
$$0.6771 \div 0.061 =$$
_______ **8.** $3.171 \div 2.1 =$ ______

Directions Write each fraction as a decimal. Round to three places.

9.
$$\frac{2}{3} =$$

_____ **13.**
$$\frac{3}{20} =$$

10.
$$\frac{7}{15} =$$

14.
$$\frac{4}{7} =$$

11.
$$\frac{4}{5}$$
 =

11.
$$\frac{4}{5} =$$
 ______ **15.** $\frac{9}{10} =$ _____

12.
$$\frac{11}{13} =$$
 ______ **16.** $\frac{8}{9} =$ ______

16.
$$\frac{8}{9} =$$

Basic Operations with Decimals

EXAMPLES

Subtract.

Multiply.

Divide.

Directions Add.

2. 71 + 3.92 + 0.125 =

3. 5.02 + 0.037 + 0.8 =

4.
$$0.0562 + 0.48 + 0.02724 =$$

5. 17 + 0.0862 + 4.082 =

6.
$$5.44 + 0.38 + 76.8 + 0.5 =$$

Directions Subtract.

7.
$$2.5 - 0.73 =$$

8.
$$60 - 0.56 =$$

12.
$$1 - 0.48 =$$

Directions Multiply.

13.
$$5.4 \times 0.8 =$$

16.
$$1.204 \times 0.012 =$$

14.
$$12 \times 2.3 =$$

17.
$$6.05 \times 2.12 =$$

15.
$$5.2 \times 0.52 =$$

18.
$$3.61 \times 0.214 =$$

Directions Divide. Round to the nearest thousandth.

19.
$$7.15 \div 5 =$$

23.
$$2.003 \div 3.1 =$$

24.
$$28.02 \div 1.3 =$$

21.
$$4.034 \div 1.2 =$$

25.
$$2 \div 0.7 =$$

22.
$$25 \div 0.6 =$$

Writing Ratios

EXAMPLE

Show all three ways of writing a ratio. Simplify fractions.

6 to 12
$$\frac{6}{12} = \frac{1}{2}$$

Directions Show all three ways of writing ratios. Simplify fractions.

Directions Count the number of each letter below.

Write the ratios.

ABCACBCCABBAACABBA CACECECECAEAEBAEAC B E A A D A D E D E C D E A D C E A

- **9.** Write the ratio of A's to all letters.
- **10.** Write the ratio of A's to E's.
- **11.** Write the ratio of A's to D's.
- **12.** Write the ratio of B's to C's.
- **13.** Write the ratio of B's to D's.
- **14.** Write the ratio of C's to D's.
- **15.** Write the ratio of B's to A's.
- **16.** Write the ratio of C's to A's.
- **17.** Write the ratio of E's to D's.
- **18.** Write the ratio of E's to C's.
- **19.** Write the ratio of E's to A's.
- **20.** Write the ratio of C's to E's.

Identifying Proportions

EXAMPLE

Cross-multiply. Compare the products.

$$\frac{2}{3}$$
 $\frac{4}{6}$

$$\frac{2}{3} = \frac{4}{6}$$

Directions Cross-multiply. Determine if the two fractions are proportional. Write = or \neq for each pair.

1.
$$\frac{4}{9}$$

$$\frac{6}{13}$$

6.
$$\frac{9}{16}$$
 $\frac{27}{48}$

$$\frac{27}{48}$$

11.
$$\frac{11}{22}$$
 $\frac{33}{55}$

$$\frac{33}{55}$$

2.
$$\frac{5}{6}$$

$$\frac{30}{36}$$

7.
$$\frac{14}{23}$$
 $\frac{16}{25}$

$$\frac{16}{25}$$

12.
$$\frac{23}{46}$$

$$\frac{41}{80}$$

3.
$$\frac{8}{9}$$

$$\frac{40}{45}$$

8.
$$\frac{9}{7}$$
 $\frac{7}{9}$

$$\frac{7}{9}$$

13.
$$\frac{11}{22}$$
 $\frac{33}{44}$

$$\frac{33}{44}$$

4.
$$\frac{3}{10}$$

$$\frac{21}{30}$$

9.
$$\frac{7}{8}$$

$$\frac{11}{12}$$

14.
$$\frac{7}{58}$$
 $\frac{15}{16}$

$$\frac{15}{16}$$

5.
$$\frac{1}{7}$$
 $\frac{19}{133}$

$$\frac{19}{133}$$

10.
$$\frac{4}{5}$$

$$\frac{20}{25}$$

15.
$$\frac{12}{7}$$
 $\frac{84}{49}$

$$\frac{84}{49}$$

Ratios and Proportions

EXAMPLE

Cross-multiply. Divide.

$$\frac{n}{21} = \frac{2}{7}$$
 $7n = 21 \times 2$
 $7n = 42$
 $n = 42 \div 7$
 $n = 6$

Directions Write a ratio to compare each of the following. Write the answer in simplest form.

- **1.** 350 miles to 5 hours
- **2.** 1 dime to 5 pennies
- **3.** 35 minutes to 2 hours
- **4.** \$5.45 per hour

- **5.** 12 cans for 96¢
- **6.** 8 oranges for \$1.00
- **7.** 1 nickel and 2 pennies to 2 dimes
- **8.** 6 hits for 8 times at bat

Directions Solve for the missing number.

9.
$$\frac{9}{n} = \frac{18}{22}$$
 13. $\frac{7}{8} = \frac{6}{n}$ **17.** $\frac{1.2}{4} = \frac{n}{3.5}$

13.
$$\frac{7}{8} = \frac{6}{n}$$

17.
$$\frac{1.2}{4} = \frac{n}{3.5}$$

10.
$$\frac{n}{6} = \frac{24}{12}$$

10.
$$\frac{n}{6} = \frac{24}{12}$$
 11. $\frac{9}{n} = \frac{1.8}{20}$ **11.** $\frac{57}{n} = \frac{19}{3.4}$

18.
$$\frac{57}{n} = \frac{19}{3.4}$$

11.
$$\frac{27}{12} = \frac{36}{n}$$

15.
$$\frac{4.5}{9} = \frac{11}{n}$$

11.
$$\frac{27}{12} = \frac{36}{n}$$
 15. $\frac{4.5}{9} = \frac{11}{n}$ **19.** $\frac{4\frac{1}{2}}{3} = \frac{n}{14}$

12.
$$\frac{8}{15} = \frac{n}{20}$$

16.
$$\frac{7.2}{n} = \frac{8}{1.6}$$

12.
$$\frac{8}{15} = \frac{n}{20}$$
 16. $\frac{7.2}{n} = \frac{8}{1.6}$ **20.** $\frac{2\frac{1}{3}}{3} = \frac{n}{4\frac{1}{2}}$

52

Using Proportions

EXAMPLE

Cross-multiply. Divide.

$$\frac{6}{n} = \frac{15}{30} \qquad 15n = 6 \times 30$$

$$15n = 180$$

$$n = 180 \div 15$$

$$n = 12$$

Directions Write ratios for the following.

- **1.** 4 lb of potatoes to 3 lb of onions
- **2.** 14 books to 1 shelf _____
- **3.** 8 quarters to 2 dollars
- **4.** 12 quarters to 3 dollars
- **5.** 15 cans of soup to 20 empty bowls

Directions Cross-multiply. Express answers in fractional form.

6.
$$\frac{5}{8} = \frac{n}{16}$$

8.
$$\frac{n}{8} = \frac{9}{36}$$

7.
$$\frac{6}{15} = \frac{n}{60}$$

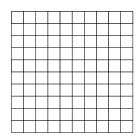
9.
$$\frac{3}{5} = \frac{n}{16}$$

Directions Write proportions. Cross-multiply to solve. Round to the nearest tenths place.

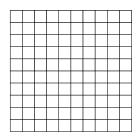
- **10.** Jared's car gets 25 miles per 1 gallon of gasoline on the highway. How many gallons will he need to drive 63 miles?
- **11.** Laura painted her room with 2 quarts of blue paint. To paint 5 rooms of the same size, how many quarts of paint will she need?
- **12.** Jules can type 150 words per 4 minutes. How many words can he type in 12 minutes? How many in 60 minutes?

Meaning of Percent with Shading

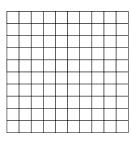
EXAMPLE

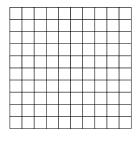

Shade the boxes to show percent.

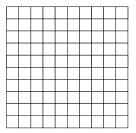
45% = 45 out of 100. Shade 45 boxes.

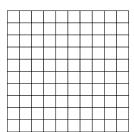


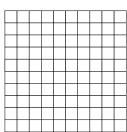
Directions Shade these percents.

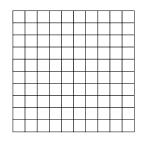

1. 15%

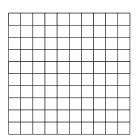

4. 44%

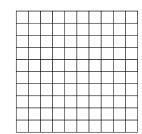

7. 81%

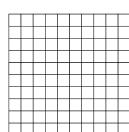

10. 55%

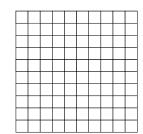

2. 92%


5. 43%


8. 6%


11. 27%


3. 31%


6. 16%

9. 3%

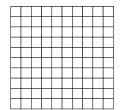
12. 88%

Changing Percents to Decimals and Fractions

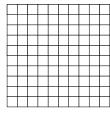
EXAMPLES

Percent as decimal

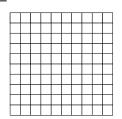
Drop percent sign. Add decimal point.

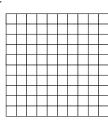

Percent as fraction

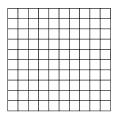
Drop percent sign. Write number as numerator over 100. Simplify if necessary.

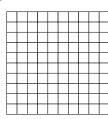

$$25\% = \frac{25}{100} = \frac{1}{4}$$

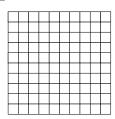
Directions Shade and write the percents as fractions and decimals.

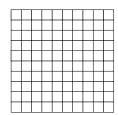



5. 72% _____


2. 42%


6. 54%


3. 58%


7. 59%

4. 95%

8. 6%

Renaming Fractions and Decimals as Percents

EXAMPLE

Rename 0.62 as percent.

Move decimal two places to the right. Add the percent symbol. 0.62 = 62%

Directions Rename these decimals as percents.

- **1.** 0.14
- **8.** 0.34 _____
- **15.** 0.113_____

- **2.** 0.521 _____
- **9.** 0.55 _____
- **16.** 0.234_____

- **3.** 0.003 _____
- **10.** 0.131_____
- **17.** 0.821_____

- **4.** 0.4
- **11.** 0.83 _____
- **18.** 0.05 _____ **19.** 0.561

- **5.** 0.581_____
- **12.** 0.006
- **20.** 0.267_____

- **6.** 0.2 **7.** 0.07
- **13.** 0.50 _____ **14.** 0.891 _____
- **21.** 0.058_____

EXAMPLE

Express the fraction as a decimal and as a percent. Divide numerator by denominator. 5)4.0 $\frac{4}{5} = 0.8 = 80\%$

Directions Express these fractions as decimals and percents.

- **22.** $\frac{6}{7}$
- **26.** $\frac{6}{8}$

30. $\frac{90}{100}$

40

- **23.** $\frac{20}{25}$
- **27.** $\frac{12}{30}$

31.

- **24.** $\frac{26}{30}$
- **28.** $\frac{30}{40}$

32. $\frac{75}{80}$

25. $\frac{4}{9}$

29. $\frac{6}{10}$

33. $\frac{62}{70}$

Period

Major Elements of a Percent Sentence

EXAMPLES		Rate	Base	Percentage
	12% of what number is 92?	12%	<u>n</u>	92
	300 is what percent of 1,500?	<u>n</u>	_1,500	300

Directions Identify the rate, base, and percentage. Use the letter n to represent a missing value.

ose the letter n to repro	Rate	Base	Percentage
1. 15% of 45 is what number?			
2. 20% of what number is 70?			
3. What percent of 50 is 30?			
4. 40 is what percent of 90?			
5. What percent of 120 is 40?			
6. What number is 80% of 120?			
7. 75% of what number is 45?			
8. 90% of 120 is what number?			
9. 9% of 89 is what number?			
10. 20% of what number is 65?			
11. What percent of 30 is 15?			
12. 25% of 250 is what number?			
13. 150% of 80 is what number?			
14. 2% of what number is 18?			
15. 45% of 200 is what number?			

Finding the Percentage

EXAMPLE

15% of 92 is

15% of 92 = n

 $0.15 \times 92 = n$

13.8 = n

Directions Find these percentages.

- **1.** 33% of 27 is
- **2.** 19% of 222 is
- **3.** 7% of 170 is
- **4.** 28% of 0.6 is
- **5.** 2.5% of 60 is
- **6.** 75% of 350 is
- **7.** 5.2% of 40 is
- **8.** 72% of 75 is
- **9.** *n* is 40% of 20
- **10.** 0.3% of 500 is

- **11.** 72% of 60 is
- **12.** 88% of 34 is
- **13.** 3.5% of 200 is
- **14.** 4% of 78 is
- **15.** 80% of 60 is
- **16.** 1% of 62 is
- **17.** 19% of 91 is
- **18.** 1.5% of 80 is
- **19.** *n* is 4.1% of 50
- **20.** 0.5% of 450 is

Directions Find the percentages.

- **21.** What number is 35% of 612?
- **22.** What number is 1.7% of 68?
- **23.** What number is 0.1% of 3,000?
- **24.** What number is 13% of 110?
- **25.** What number is 8% of 66?

Alternative Activity

Chapter 6, Lesson 6

Finding the Base

EXAMPLE

20% of *n* is 100

0.20 of *n* is 100

$$0.20 \times n = 100$$

 $n = 100 \div 0.20$
 $n = 500$

Directions Find the base in each of these percent sentences.

The bases will be whole numbers.

1. 15% of <i>n</i> is 75	 15. 46% of <i>n</i> is 437	
2. 7% of <i>n</i> is 42	 16. 50% of <i>n</i> is 165	
3. 30% of <i>n</i> is 21.6	 17. 19% of <i>n</i> is 8.74	
4. 25% of <i>n</i> is 119	 18. 65% of <i>n</i> is 33.8	
5. 16% of <i>n</i> is 5.6	 19. 80% of <i>n</i> is 8	
6. 4% of <i>n</i> is 3.8	 20. 6% of <i>n</i> is 54	
7. 20% of <i>n</i> is 92	 21. 10% of <i>n</i> is 85	
8. 80% of <i>n</i> is 36	 22. 3% of <i>n</i> is 7.5	
9. 15% of <i>n</i> is 11.4	 23. 8% of <i>n</i> is 2.8	
10. 34% of <i>n</i> is 34	 24. 14% of <i>n</i> is 7.9	
11. 80% of <i>n</i> is 368	 25. 50% of <i>n</i> is 14	
12. 95% of <i>n</i> is 190	 26. 75% of <i>n</i> is 36	
13. 30% of <i>n</i> is 14.4	 27. 10% of <i>n</i> is 62.1	
14. 80% of <i>n</i> is 280	28. 40% of <i>n</i> is 160	

Percent Sentences

EXAMPLES

25% of 50 is _____
25% of 50 =
$$n$$

 $0.25 \times 50 = 12.5$

Base

25% of _____ is 40
25% ×
$$n = 40$$

 $0.25n = 40$

$$n = 40 \div 0.25$$

 $n = 160$

Rate

$$n\% \times 36 = 6$$

 $n \times 0.36 = 6$
 $n = 6 \div 0.36$

$$n = 16.66\%$$

Directions Solve for the percentage.

Directions Solve for the base.

Directions Solve for the rate.

Working with Percents

EXAMPLES

25% of 80 is _____
25% of 80 =
$$n$$

$$0.25 \times 80 = n$$

$$20 = n$$

Base

25% of _____ is 17
25% ×
$$n = 17$$

0.25 $n = 17$

$$0.23 \, n = 17$$

 $n = 68$

Rate

$$\frac{}{n\% \times 70}$$
 % of 70 is 7

$$n \times 0.70 = 7$$

$$n = 7 \div 0.70$$

 $n = 10\%$

Directions Solve for the percentage.

5. ______ is
$$7\frac{1}{2}\%$$
 of 80

6.
$$12\frac{1}{2}\%$$
 of 72 is _____

Directions Solve for the base.

11. 20% of is
$$2\frac{1}{2}$$

12.
$$6\frac{2}{3}\%$$
 of ______ is 12

Directions Solve for the rate.

Directions Complete each percent sentence.

23.
$$2\frac{1}{2}$$
 is 35% of _____

Using Proportions

EXAMPLES

$$\frac{n}{100} = \frac{30}{40}$$

$$100 \times 30 = 40n$$

$$\frac{3,000}{40} = \frac{40n}{40}$$

$$75\% = n$$

$$5\% \text{ of } 40 = n$$

$$\frac{5}{100} = \frac{n}{40}$$

$$100n = 5 \times 40$$

$$\frac{100n}{100} = \frac{200}{100}$$

$$n = 2$$

Directions Solve these proportions.

1.
$$\frac{n}{100} = \frac{32}{128}$$

3.
$$\frac{8}{100} = \frac{40}{n}$$

2.
$$\frac{30}{100} = \frac{n}{60}$$

4.
$$\frac{5}{100} = \frac{50}{n}$$

Directions Write proportions. Solve for the missing value.

5. 25% of
$$n = 6$$

6. 5% of
$$150 = n$$

7.
$$n\%$$
 of $36 = 16.2$ ______ **13.** 62% of $n = 50$ _____

8. 34% of
$$n = 18.7$$
 _____ **14.** 8% of $22 = n$ _____

14. 8% of
$$22 = n$$

16. 5% of
$$n = 3.6$$

Discount

Find the discount and sale price. Discount rate is 25%. List price is \$1,000.00.

\$1,000.00 list price Step 1

\$1,000.00 list price Step 2

× .25

<u>- 250.00</u> discount

\$250.00 discount

\$750.00 sale price

Directions Find the products and round answers to the nearest cent.

1. \$14.98 \times .34 **3.** \$40.00 \times .20

5. \$29.95 \times .10

2. \$4.50 \times .20

4. \$175.99 \times .15

6. \$39.50 × .20

Directions Solve these discount problems.

7. Sasha bought a computer. It had a list price of \$1,250.00. How much will he pay with a 15% discount?

8. Music CDs cost \$25.00. How much will Lauren pay with a discount of 25%?

9. Megan purchases tennis balls with a list price of 6 for \$20.00.

How much will she pay with a 12% discount?

10. \$300.00 list price Discount rate 15% Discount _____ Sale price _____ **12.** VCR list \$99.00 Discount rate 10% Discount _____ Sale price _____

14. \$550.00 list price Discount rate 15% Discount _____ Sale price _____

- **11.** \$770.00 list price Discount rate 30% Discount _____ Sale price _____
- **13.** \$795.00 list price Discount rate 30% Discount Sale price _____
- **15.** \$850.00 list price Discount rate 25% Discount _____ Sale price _____

Sales Tax

EXAMPLE

Multiply to compute sales tax.

7% tax on \$9.00 7% × 9.00 = $0.07 \times 9.00 = \$0.63$

Directions Compute the sales tax. Remember to round up to the nearest cent. Show steps.

- **1.** \$17.00 at 6.5%
- **8.** \$7.75 at 8%
- **15.** \$470.00 at 6%

- **2.** \$22.50 at 8%
- **9.** \$40.45 at 8%
- **16.** \$1.99 at 7%

- **3.** \$1.03 at 5%
- **10.** \$19.95 at 6%
- **17.** \$9.82 at 5%

- **4.** \$82.46 at 7%
- **11.** \$2,485.00 at 5%
- **18.** \$65.71 at 5%

- **5.** \$48.00 at 6%
- **12.** \$1.01 at 5%
- **19.** \$300.00 at 6%

- **6.** \$475.00 at 5%
- **13.** \$29.95 at 6%
- **20.** \$39.95 at 6%

- **7.** \$32.55 at 6%
- **14.** \$104.00 at 6%
- **21.** \$1.20 at 5%

Simple Interest

EXAMPLES

Compute the simple interest. The principal is \$400.00. The interest rate is 7% for 2 years.

$$\times$$
 2 years

Compute the simple interest on \$200. The rate is 6% for 8 months.

$$\frac{\$12}{1} \times \frac{8}{12}$$

\$12.00 interest for 1 year

$$\frac{12}{1} \times \frac{8}{12} = \frac{96}{12} = 8$$

 $\frac{\$12}{1}$ × $\frac{8}{12}$ Write 8 monus over 12 months to express time

as years.

\$8.00 is the interest for 8 months

Directions Compute the simple interest. Show work.

6. \$5,600.00 at 11% for 6 years

\$101.50

Chapter 6, Lesson 12

Installment Buying

\$\frac{1}{\$100.00}\$ previous balance \times \frac{.015}{\$1.50}\$ finance charge

> \$91.50 new balance New balance before first payment

Directions Liah buys a \$1,000.00 computer on the installment plan. She pays a monthly finance charge of $1\frac{1}{2}\%$. Fill in the chart to show how she will pay for the television if she pays \$100.00 per month. Round finance charges to the nearest cent.

Month	Previous Balance	Finance Charge	Before Payment	Monthly Payment	New Balance
January	\$1,000.00	\$15.00	\$1,015.00	\$100.00	\$915.00

Total paid = Finance charges	+ Original _	=	
	balance		

 \times 0.04 commission rate

Computing Commission

EXAMPLES

lackson receives 5% commission on sales of \$500.00. How much will he receive?

> \$500.00 sales × .05 commission rate \$25.00 commission

Rosa receives a 4% commission on all sales over \$3,000.00 and her total sales are \$7,000.00. How much will she receive?

\$7,000.00 total sales - \$3,000.00 minimum on sales Compute commission

\$160.00 commission on this amount

Rosa receives \$160.00 commission.

Directions Compute the commission on each sale.

1. Sales amount \$10,000.00

Commission rate 5%

Commission _____

5. Sales amount \$7,200.00

Commission rate 4%

Commission _____

2. Sales amount \$2,500.00

Commission rate 4%

Commission _____

6. Sales amount \$5,600.00

Commission rate 7%

Commission _____

3. Sales amount \$5,670.00

Commission rate 6% over \$2,000.00

Commission _____

7. Sales amount \$7,000.00

Commission rate 7% over \$1,500.00

Commission _____

4. Sales amount \$8,000.00

Commission rate 5% over \$2,000.00

Commission _____

8. Sales amount \$9,100.00

Commission rate 5% over \$2,500.00

Commission _____

Tips

EXAMPLE

Compute a 15% tip on a meal that cost \$36.50. Give the total cost.

\$36.50 meal cost \times 0.15 tip rate 18250

\$36.50 cost of meal

+ \$5.48 tip \$41.98 total

3650

\$5.4750 round to nearest cent \$5.48 rounded to nearest cent

Directions Compute the tip for each meal. Use 15% as a tip rate. Give the total cost.

1. Meal cost \$25.00

3. Meal cost \$7.89

4. Meal cost \$5.75

5. Meal cost \$7.50

Tip _____ Meal total _____ Tip _____ Meal total _____

Tip _____

Tip _____ Meal total _____

2. Meal cost \$7.50

Meal total

Meal total

6. Meal cost \$8.45

Tip _____

Meal total

Directions Sometimes tips are rounded to the nearest dollar. An example is round \$4.89 to \$5.00. Compute the tips at 15%. Round these tips to the nearest dollar. Give total cost.

7. Meal cost \$4.10

Tip _____

Meal total _____

9. Meal cost \$11.45

Tip _____

Meal total _____

11. Meal cost \$8.25

Tip _____

Meal total _____

8. Meal cost \$16.50

Meal total

10. Meal cost \$4.80

Tip _____

Meal total

12. Meal cost \$21.50

Tip _____

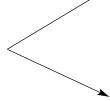
Meal total

Points, Lines, and Angles

EXAMPLE

Make a construction to represent \overrightarrow{BC} .

В


Rays can be drawn from either direction. The beginning point must be B as indicated with BC.

Directions Name these constructions.

1.

3.

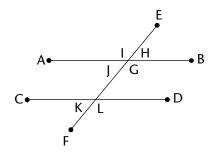
2.

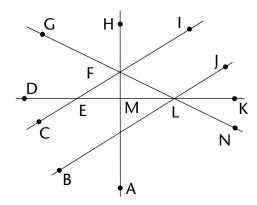
Directions Use the baselines provided to construct the following geometric constructions.

5. XÝ

7. Vertex *H*

6. ∠*FGH*


8. \overline{AB}


Identifying Angles

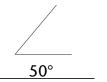
EXAMPLE

Classify $\angle EIA$.

∠EIA is more than 90°. ∠EIA is an obtuse angle.

Date

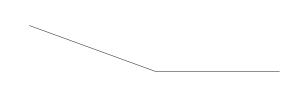
Directions Use the diagram above to answer these questions.


- **1.** Write two lines that seem parallel.
- **2.** What kind of angle is $\angle CFG$?
- **3.** What kind of angle is $\angle NLB$?
- **4.** What two lines appear perpendicular?
- **5.** Classify angle $\angle AMD$.
- **6.** Classify angle $\angle GFA$.
- **7.** List all the vertices.
- **8.** List two intersecting lines.

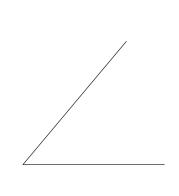
Measuring Angles

Place protractor on angle so that center is on the vertex. The baseline should be on one of the rays.

Make sure the second ray crosses the scale. Read the scale.



Directions Use a straightedge (ruler). Extend the sides of these angles. Measure with a protractor. Each angle will be less than 180°.


1.

2.

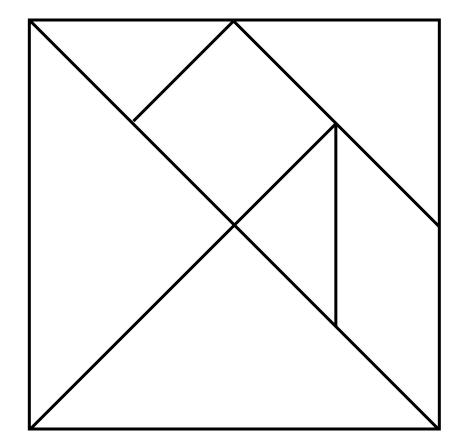
3.

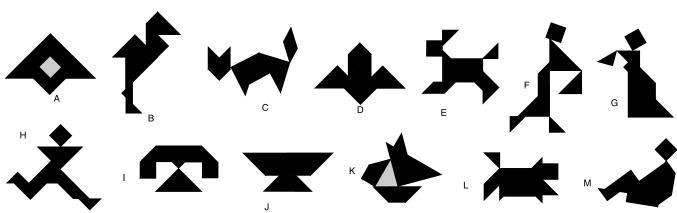
4.

Patterns Using Squares

EXAMPLE	Dominoes is a game played with tiles. Each tile is two squares placed side by side. This is the only way the squares can be arrang	ed: 🔲
	Triminoes are arrangements of three squares. trimino shapes. They are and	There are two
	Notice that the squares must touch on their ed They do not touch on their corners.	dges.
	Quadriminoes are arrangements of four square basic quadriminoes. Some have mirror images same shape but backward. The five basic shap mirror images are shown.	, or the
	Basic Shapes	Mirror Images

Directions Solve the problems below.

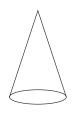

- **1.** Pentominoes are arrangements of five squares. Use the graph paper. Draw the twelve pentominoes.
- **2.** Cut out the pentominoes. Arrange the twelve shapes into a rectangle that is six squares wide by ten squares long. Try to do this. Trace your solution on paper.
- **3.** Pentominoes can form other rectangles. One measures five squares wide by twelve squares long. One is four squares by fifteen squares. Another is three squares by twenty squares. Try to make these rectangles. Trace your solutions. (The three-by-twenty rectangle is difficult to do.)
- **4.** Hexominoes are arrangements of six squares. See how many you can draw on your graph paper.


Alternative Activity

Tangrams

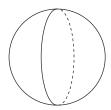
Directions A tangram is an old Chinese puzzle. It is a square made from seven pieces, or tans. Cut the tangram into pieces along the lines. Arrange the pieces to make different shapes. Each shape uses all seven tans. Do not put one piece over the other.

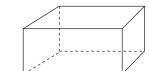
- **1.** Put the shapes back together as a square.
- **2.** Make a parallelogram.
- **3.** Make a triangle.
- **4.** Make some of the shapes shown below.



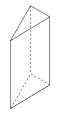
Solid Figures

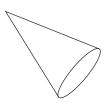
EXAMPLE


Look at the solid figure. Name it.


cone

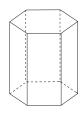
Directions Name these solid figures.

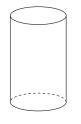

1.


5.

2.

6.


3.



7.

4.

Period

Units of Measurement

EXAMPLE

Circle the letter of the best answer.

Think about what the prefix means. Think about how one unit of measure connects to the other.

Centimeter means one-hundredth meter. 3 centimeters is 3 one-hundredths or 0.03 meters.

3 centimeters

- A 300 meters
- **B** 30 meters
- C 0.3 meters
- (**D**) 0.03 meters

Prefix	Value one thousand one hundred ten one-tenth one-hundredth one-thousandth	Symbol	Example
kilo		k	kilometer
hecto		h	hectometer
deka		da	dekagram
deci		d	decimeter
centi		c	centigram
milli		m	millimeter
Sometin	nes deka is spelled	deca.	

Directions Circle the letter of the best answer.

- **1.** 4 kilometers
 - **A** 4 meters
 - **B** 0.004 meters
 - **C** 4,000 meters
 - **D** 400,000 meters
- **2.** 6 dekameters
 - **A** 60 meters
 - **B** 600 meters
 - **C** 0.60 meters
 - **D** 600 meters
- **3.** 2 hectometers
 - **A** 2 meters
 - **B** 20 meters
 - **C** 0.02 meters
 - **D** 200 meters

- **4.** 6 hectometers
 - **A** 6 meters
 - **B** 0.06 meters
 - **C** 0.006 meters
 - **D** 600 meters
- **5.** 17 kilometers
 - **A** 1,700 meters
 - **B** 17,000 meters
 - **C** 17 meters
 - **D** 1.7 meters
- **6.** 45 centimeters
 - **A** 45 meters
 - **B** 4.5 meters
 - \mathbf{C} 0.45 meters
 - **D** 0.045 meters

- 7. 9 decimeters
 - A 90 meters
 - **B** 9 meters
 - **C** 0.9 meters
 - **D** 0.09 meters
- **8.** 5 millimeters
 - **A** 5 meters
 - **B** 0.5 meters
 - **C** 0.05 meters
 - **D** 0.005 meters

Measuring Lengths

EXAMPLE

Each numbered space on a metric ruler is one centimeter (cm). Each smaller space is one millimeter (mm). A millimeter is one-tenth of a centimeter. There are ten millimeters in one centimeter.

Date

Period

The distance is 55 millimeters or 5.5 centimeters.

Directions Use a metric ruler to measure the distance from the bottom of each pot to the top of the plant. Give the measurement in both millimeters and centimeters.

1.

7.

8.

2.

76

Appropriate Units

EXAMPLE

Circle the most reasonable measurement.

Length of your math book. 24 mm 24 cm 24 m 24 km Think of the length of the object and the size of the unit. Choose the unit that is most reasonable.

Directions Circle the most reasonable measurement.

- **1.** Length of a pen 15 mm 15 cm 15 m 15 km
- **2.** The length of a sheet of paper 28 mm 28 cm 28 m 28 km
- **3.** The height of a house 15 mm 15 cm 15 m 15 km
- **4.** The width of a kitchen 3 mm 3 cm 3 m 3 km

- **5.** The length of your arm 620 mm 620 cm 620 m 620 km
- **6.** The distance between two cities 84 mm 84 cm 84 m 84 km
- **7.** The length of a finger 53 mm 53 cm 53 m 53 km
- **8.** Your height 1.6 mm 1.6 cm 1.6 m 1.6 km

Directions Use the diagram and conversion chart. Fill in the missing numbers.

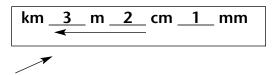
1 kilometer = 1,000 meters 1 meter = 100 centimeters 1 centimeter = 10 millimeters 1 meter = 1,000 millimeters

km <u>3</u> m <u>2</u> cm <u>1</u> mm

- **9.** 426 cm = _____ m
- **10.** 385 m = _____ km
- **11.** 48 cm = _____ mm
- **12.** 78 m = _____ cm
- **13.** 96 cm = _____ m
- **14.** 86 mm = ____ cm
- **15.** 8 m = mm

- **16.** 52.8 cm = _____ m
- **17.** 4.16 km = _____ m
- **18.** 18.2 m = km
- **19.** 7.2 cm = _____ mm
- **20.** 3,860 mm = _____ m
- **21.** 4,360 cm = _____ m
- **22.** 0.0024 km = _____ cm

Working with Measurements of Length


EXAMPLES

$$2.6 \text{ m} = \underline{260} \text{ cm}$$

km 3 m 2 cm 1 mm

$$5.2 \text{ cm} = 0.000052 \text{ km}$$

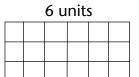
The decimal has moved 5 places to the left. The arrow has moved under the 2 and the 3. 2 + 3 = 5. Move the decimal 5 places in the direction of the arrow.

Directions Use the charts. Make these conversions.

1.
$$7 \text{ m} = \text{cm}$$

Directions Add to find the answers.

15.
$$2 \text{ m} + 0.01 \text{ km} =$$
_____ m


16.
$$0.01 \text{ cm} + 5 \text{ mm} = \underline{\hspace{1cm}} \text{mm}$$

17.
$$1,000 \text{ m} + 2 \text{ km} = \underline{\qquad} \text{ m}$$

22.
$$120 \text{ mm} + 10 \text{ cm} = \underline{\qquad} \text{mm}$$

Area

EXAMPLE

3 units

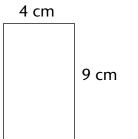
Area = length \times width Area = $6 \text{ units} \times 3 \text{ units}$ Area = 18 square units

All area measurements are written as square units.

Directions Find the area of these rectangles.

1. length =
$$14 \text{ m}$$
 width = 6 m

5. length = 25 mmwidth = 10 mm


2. length =
$$7 \text{ meters}$$
 width = 13 meters

6. length = 5 cmwidth = 5 cm

3. length =
$$100 \text{ cm}$$

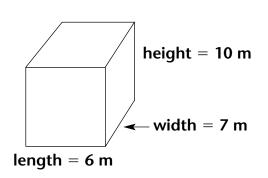
width = 1 cm

7. length = 22 cmwidth = 19 cm

4.

8. 20 km

10 km


Volume

EXAMPLE

Find the volume of this figure.

Volume = length
$$\times$$
 width \times height
= 6 m \times 7 m \times 10 m

 $= 420 \text{ cubic meters or } 420 \text{ m}^3$

Directions Find the volume for these figures.

1. length =
$$19 \text{ m}$$

width = 8 m

height = 8 m

5. length =
$$2 \text{ km}$$

width = 1 km

height = 1.5 km

9. length =
$$5 \text{ mm}$$

width = 5 mm

height = 10 mm

2. length =
$$4 \text{ cm}$$

width = 4 cm

height = 4 cm

6. length =
$$20 \text{ km}$$

width = 15 km

height = 20 km

10. length =
$$17 \text{ m}$$

width = 2 m

height = 14 m

3. length =
$$4 \text{ km}$$

width = 5 km

height = 10 km

7.
$$length = 20 \text{ mm}$$

width = 55 mm

height = 230 mm

width = 20 cm

height = 12 cm

4. length =
$$9 \text{ km}$$

width = 20 km

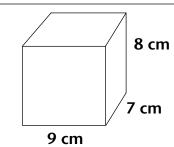
height = 25 km

8. length =
$$4 \text{ m}$$

width = 12 m

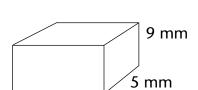
height = 2 m

12. length =
$$100 \text{ m}$$

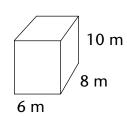

width = 70 m

height = 50 m

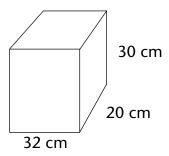
Capacity


EXAMPLE

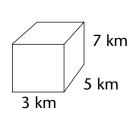
Volume = length
$$\times$$
 width \times height
= 9 cm \times 7 cm \times 8 cm
= 504 cubic cm

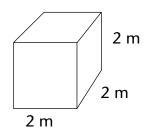

Directions Find the capacity.

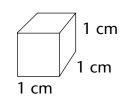
1.

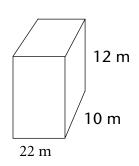


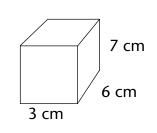
6 mm


4.


7.

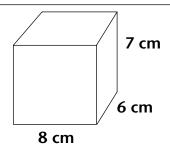

2.


5.



8.

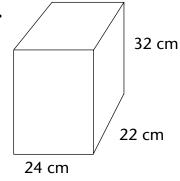
3.

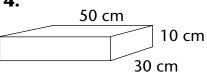


Units of Capacity

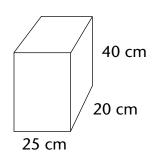
EXAMPLE

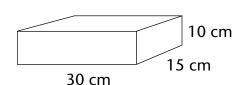
Find the volume. Divide the volume by 1,000 to change to liters.

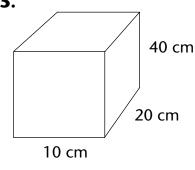

Volume = length \times width \times height = 8 cm \times 6 cm \times 7 cm = 336 cubic cm 336 \div 1,000 = 0.336 liters

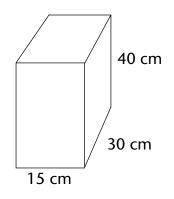

Directions Find the volume for these figures.

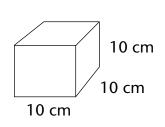
Divide volume by 1,000 to change to liters.

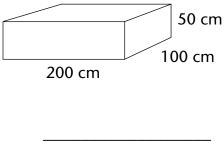

1.


4.


7.


2.


5.



8.

3.

Mass

EXAMPLE

Circle the most reasonable unit of measurement.

a jet plane mg g

g (kg

A jet plane has a large mass. Use kilograms to measure its mass.

Directions Choose the best measurement for each of these items. Circle your answer.

1. a cup

mg

g

g

9. a football team

mg

g kg

17. a kitchen stove

mg g

2. a paper clip

mg

kg

kg

kg

kg

kg

kg

kg

10. a cracker

mg

g

18. a kitchen blender

mg g

kg

kg

3. a table lamp

mg

g kg

11. a duck

mg

g

19. a bucket of sand

mg

kg

4. a car engine

mg

3

mg

12. a bar of soap

g

kg

kg

kg

Period

20. a ladder

mg

g

g

kg

5. an alligator

mg

g

13. a head of lettuce

14. a slice of bread

mg

g

kg

kg

21. a tugboat

mg

g kg

6. a bowling ball

mg

g

mg

g

22. a VCR

mg

kg

7. an olive

mg

g

mg

g

kg

23. a couch

mg

g

g

g

kg

8. a small bug

mg

g

16. a telephone book

15. a roll of quarters

mg

g

kg

24. a house cat

mg

kg

Working with Units of Mass

EXAMPLE

Step 1 Draw a line from g to kg. **Step 2** The line moves to the left. It passes the 3. \leftarrow

The 3 means move the decimal 3 places to the left.

3,300 grams = 3.3 kilograms

Directions Use the chart to help make these conversions.

1 kilogram = 1,000 grams1 gram = 100 centigrams1 centigram = 10 milligrams 1 gram = 1,000 milligrams

10.
$$0.78 \text{ kg} =$$
 _____g

Capacity

EXAMPLES)

6 pints = 96 fluid ounces

Multiply. $6 \times 16 = 96$

6 quarts = 192 fluid ounces

Write this: 6 quarts = 12 pints = 192 fluid ounces

Commonly Used Measurements

1 pint = 16 fluid ounces

1 quart = 2 pints

1 quart = 32 fluid ounces

1 gallon = 4 quarts

Directions Make these conversions. Multiply to convert from large to smaller units.

- **1.** 7 pints = _____ fluid ounces **5.** 3 gallons = _____ quarts
- **2.** 5 gallons = _____ quarts
- **6.** 9 quarts = _____ pints
- **3.** 23 pints = _____ fluid ounces **7.** 17 gallons = _____ quarts
- **4.** 6 gallons = _____ quarts
- **8.** 12 quarts = _____ pints

Directions Change the units to intermediate units first.

- **9.** 23 gallons = _____ pints
- **10.** 15 quarts ______ fluid ounces

Directions Make these conversions. Divide to convert from small to larger units. If necessary, write answers as mixed numbers.

- **11.** 24 fluid ounces = _____ pints
- **16.** 9 pints = _____ quarts
- **12.** 20 pints = _____ quarts
- **17.** 24 pints = _____ quarts
- **13.** 30 pints = _____ quarts
- **18.** 40 quarts = _____ gallons
- **14.** 28 pints = _____ quarts
- **19.** 23 quarts = _____ gallons
- **15.** 14 quarts = _____ gallons
- **20.** 36 fluid ounces = _____ pints

Converting Units of Weight

EXAMPLES

Multiply or divide to convert units.

7,000 pounds = _____ tons
7,000 ÷ 2,000 =
$$3\frac{1}{2}$$
 tons

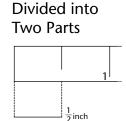
Commonly Used Measurements

1 pound = 16 ounces

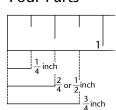
1 ton = 2,000 pounds

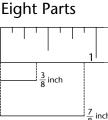
Directions Multiply to convert large units to small units.

Directions Divide to convert small units to large units.

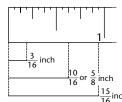

Write remainders as fractions.

Measuring with Inches


EXAMPLE

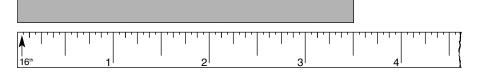

Before you can measure distances in the customary system, you will need to know about the marks on a ruler. Look at the first inch on your ruler.

One Inch


Divided into **Four Parts**

Divided into

Divided into Sixteen Parts



Each part is $\frac{1}{2}$ inch.

Each part is $\frac{1}{4}$ inch.

Each part is $\frac{1}{8}$ inch.

Each part is $\frac{1}{16}$ inch.

The length of this bar is $3\frac{1}{2}$ inches.

Directions Measure the length of each bar to the nearest sixteenth inch. Simplify answers.

1.

2.

3.

4.

5.

6.

Lengths and Distances

EXAMPLES

$$6 \times 12 = 72$$

$$40 \div 12 = 3\frac{4}{12}$$
 or $3\frac{1}{3}$

40 inches =
$$3\frac{1}{3}$$
 feet

Use the chart to make these conversions.

$$1 \text{ yard} = 3 \text{ feet}$$

1 mile =
$$5,280$$
 feet

Directions Multiply to make these conversions.

Directions Divide to make these conversions. Write remainders as fractions.

88

Operations with Linear Measurements

EXAMPLES

Add. Subtract.

Multiply.

3 feet 5 inches + 7 feet 9 inches 10 feet 14 inches or 5 feet 6 inches

– 2 feet 8 inches

2 feet 7 inches
5

2 feet 10 inches

10 feet 35 inches or 12 feet 11 inches

11 feet 2 inches

Divide.

7 yards 3 feet 5 inches or

$$\frac{14 \text{ yards}}{2} \quad \frac{6 \text{ feet}}{2} \quad \frac{10 \text{ inches}}{2} =$$

14 yards 6 feet 10 inches \div 2 =

8 yards 0 foot 5 inches

Directions Add. Simplify answers.

Directions Subtract. Simplify answers.

6. 4 yards 3 feet
$$-$$
 4 feet $=$

5. 11 yards 4 feet − 3 yards 7 feet

Directions Multiply. Simplify answers.

9.
$$2 \times (4 \text{ yards } 3 \text{ feet } 5 \text{ inches}) =$$

8. 4 yards 5 feet 6 inches × 3

Directions Divide. Simplify answers.

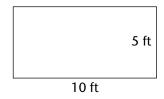
10. (15 yards 21 feet 9 inches)
$$\div$$
 3 =

11. (8 yards 2 feet 10 inches)
$$\div$$
 2 =

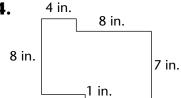
12. (21 yards 28 feet 21 inches)
$$\div$$
 7 =

Perimeter

EXAMPLE


To find perimeter, add the lengths of all sides.

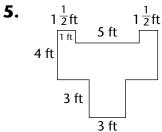
$$4 + 4 + 2 + 2 = 12$$
 in.


4 in.

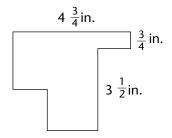
Directions Find the perimeter.

1.

4.


$$4\frac{1}{2}in.$$

$$3\frac{3}{4}in.$$


$$3\frac{1}{4}in.$$

$$5\frac{1}{2}in.$$

$$3\frac{3}{4}in.$$

3.

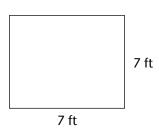
Area

EXAMPLE

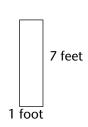
Multiply length by width to find area.

$$A = I \times w$$

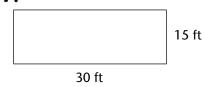
$$A = 10 \times 5$$

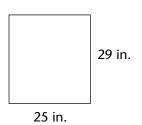

$$A = 50$$
 square inches

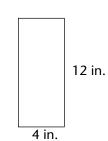
10 in.

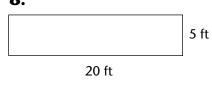

5 in.

Directions Find the area of each rectangle.

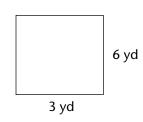

1.


4.


7.

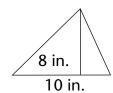

2.


5.



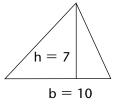
8.

3.

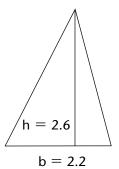

Area of a Triangle

EXAMPLE

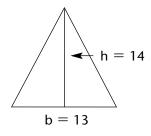
Find the area of a triangle by multiplying $\frac{1}{2}$ base by height.

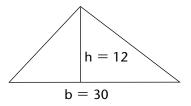

$$A = \frac{1}{2}$$
 base \times height

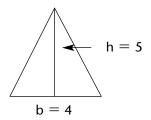
$$A = \frac{1}{2} 8 \times 10$$

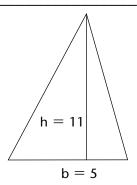


Directions Find the area of each triangle. The measurements are given in inches.

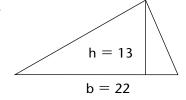

1.


4.


7.


2.

5.


8.

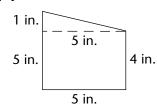
3.

$$h = 13$$

$$b = 26$$

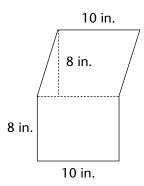
Area

EXAMPLE

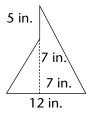

To find area of odd shapes, find the area of parts and multiply.

$$A = I \times w$$
 $A = \frac{1}{2}bh$

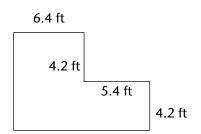
$$A = 4 \times 5$$
 $A = \frac{1}{3} \times 5 \times 1$

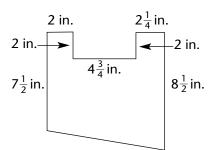

$$A = 20$$
 $A = 2.5$

$$\begin{array}{lll} A = I \times w & A = \frac{1}{2} \, bh \\ A = 4 \times 5 & A = \frac{1}{2} \, 5 \times 1 \\ A = 20 & A = 2.5 & 20 + 2.5 = 22.5 \, \text{square inches} \end{array}$$



Directions Find the area of each shape.

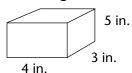

1.



3.

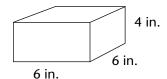
2.

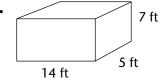
Volume of a Rectangular Prism

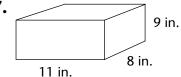

EXAMPLE

The volume of a rectangular prism = length \times width \times height.

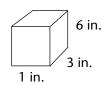
$$V = I \times w \times h$$

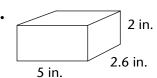

$$V = 4 \times 3 \times 5$$

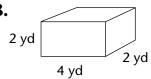

$$V = 60$$
 cubic inches

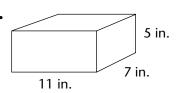

Directions Find the volume.

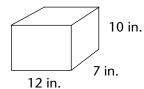
1.




7.


2.


5.

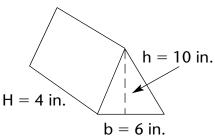

8.

3.

6.

9. length = 4 yards width = 4 yards height = 9 feet

Volume = ____


11.	length = 1 yard
	width $= 7$ feet
	height = 2 feet
	Volume -

10. length = 6 feet width = 6 feet height = 1 yardVolume = _____

12. length = 5 yards width = 7 yards height = 6 yardsVolume = _____

Volume of a Triangular Prism

Volume = $\frac{1}{2}$ (base × height) Height

Volume =
$$\frac{1}{2}$$
 (base × height) Height
= $\frac{1}{2}$ (6 × 10) × 4
= $\frac{1}{2}$ (60) × 4
= 30 × 4
= 120 cubic inches

Directions Solve for the volume.

Circumference

EXAMPLE

A circle has a radius of 4. Find its circumference.

Circumference = $\pi \times d$

diameter (d)
$$= 2 r$$

$$\pi = 3.14$$

$$d = 2(4)$$

$$d = 8$$

Circumference = $\pi \times d$

$$C = 3.14 \times 8$$

$$C = 25.12$$

Directions Find the circumferences of these circles.

1.

$$r = 12$$

$$r = 12$$

2.

3.

$$d = 4$$

$$d = 20$$

4.

$$d = 33$$

5.

$$r = 5.5$$

6.

7.

8.

$$r = 8$$

$$d = 11$$

$$r = 30$$

9.

$$r = 2.5$$

10.

$$d = 22$$

11.

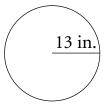
$$d = 2$$

$$r = 5$$

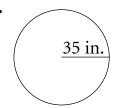
Working with Circles

EXAMPLE

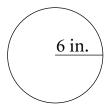
$$C = 2 \times \pi \times radius$$

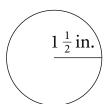

$$r = 4$$

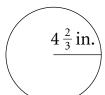
$$C = 2 \times \frac{22}{7} \times 4 = \frac{176}{7} = 25\frac{1}{7}$$
 $C = 2 \times 3.14 \times 4 = 25.12$

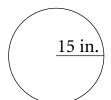

Directions Find circumference.

Use $\frac{22}{7}$ for π .

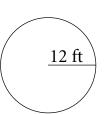

1.


3.

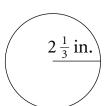

5.


2.

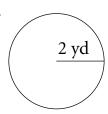
4.

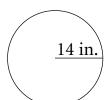


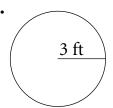
6.

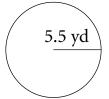


Directions Find area. For 7–9, use $\frac{22}{7}$ for π . For 10–12, use 3.14 for π .


7.


9.


11.



8.

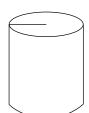
10.

Volume of a Cylinder

EXAMPLE

Volume =
$$\pi r^2 H$$

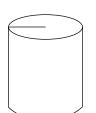
$$r = 4$$


$$H = 10$$

$$=3.14\times4^2\times10$$

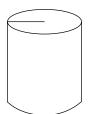
$$= 3.14 \times 16 \times 10$$

Directions Find volume. Remember to write answers in cubic units.


1.

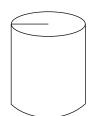
$$r = 5$$

$$H = 9$$


4.

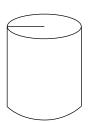
$$r = 1$$

$$H = 17$$


2.

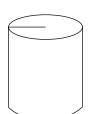
$$r = 2.6$$

$$H = 8$$


5.

$$r = 14$$

$$H = 10$$


3.

$$r = 3$$

$$H = 11$$

6.

$$r = 20$$

$$H = 10$$

7. radius = 20

$$height = 2$$

8.
$$radius = 10$$

$$height = 15$$

Working with Time

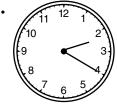
EXAMPLE

The short hand tells the hour. The long hand tells the minutes.

3:55 or 5 to 4

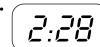
Directions Write the time shown on each clock.

1.


5.

9

13.



2.

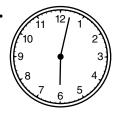
6.

10.

14.

1:27

3.


7.

11.

15.

4.

8.

Elapsed Time

Look at the number that the little hand points to or has just passed. That is the hour.

Count the spaces from the 12 to the big hand. They are the minutes. Each number counts as 5 minutes. Each space counts as 1 minute.

Clock A

Clock B 8:30 Clock A 3:20

Clock A

Clock B 10:05 = 9:65

 $2:30 = \frac{2:30}{7:35}$ Clock A

Clock B

Directions Write the time on each clock. First write the hour, then a colon, and then the minutes.

1.

3.

2.

4.

Directions Subtract. Find the amount of time that has elapsed from the time shown on Clock A to the time shown on Clock B. You may need to rename 1 hour as 60 minutes.

Clock B

Clock A

Clock B

Clock A

Clock B

8.

Clock B

Using Pictographs

EXAMPLE

Look at the pictograph below.

One book is equal to 5 books read.

Did Rinker or Marvin read more books?

Rinker read 25 books.

Marvin read 35 books.

Marvin read more books.

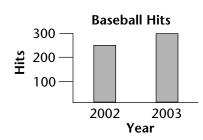
Directions Write the number of books read.

= 5 books read

	1	
A.		

Directions Write the letter for each club student.

- **1.** Juan read 45 books for the club.
- **2.** Renee read 10 books.
- **3.** Marlene read twice as many books as Renee.
- **4.** Marvin read 10 fewer books than Juan.
- **5.** Will read 5 more books than Renee.
- **6.** Rinker read 25 books.


Directions Use the pictograph to answer the questions.

- 7. How many books did Rinker and Marlene read together?
- **8.** How many books did everyone read?

Bar Graphs

EXAMPLE

Make a graph to show 250 baseball hits in 2002 and 300 baseball hits in 2003. Follow the directions given.

To make a bar graph, follow these five steps:

- **Step 1** Will you make vertical bars? Will you make horizontal bars?
- **Step 2** Choose a scale.
- **Step 3** Label the axes.
- **Step 4** Draw the bars.
- **Step 5** Give the graph a title.

Directions Make a horizontal bar graph.

SOFTBALL DISTANCE THROW					
Contestant Distance					
140 feet					
120 feet					
170 feet					
150 feet					

Directions Make a vertical bar graph.

HIGH JUMP				
Contestant Height Jumped				
Anita	53 inches			
Jim	50 inches			
Vickie 62 inches				
Robert	57 inches			
Flo	55 inches			

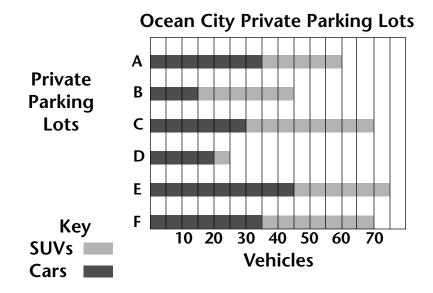
Period

Divided Bar Graphs

EXAMPLE

How many cars are in Lot E?

Find E on the graph.


Read the key.

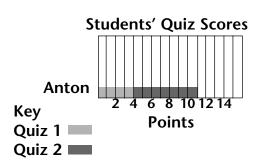
The scale is 5 vehicles per section.

Cars make up 9 sections.

 $9 \times 5 = 45$ 45 cars are parked in Lot E.

Directions Use the divided bar graph to answer the questions.

- **1.** How many SUVs are parked on Lot B?
- **2.** How many cars are parked on Lot C?
- **3.** How many vehicles are parked on Lot F?
- **4.** How many SUVs are parked on Lot D?
- **5.** How many cars are parked on Lot B?
- **6.** How many vehicles are parked on Lots A and B combined? _____
- **7.** How many SUVs are there in all the lots?
- **8.** How many vehicles are there in all the lots?


Making Divided Bar Graphs

EXAMPLE

Anton scored 4 extra points in the first quiz. He made 7 extra points in the second quiz.

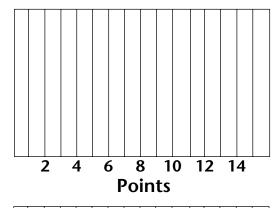
Write his name on the vertical axis. Decide on the scale. Shade to show 4 points on the first quiz and add 7 points for the second quiz.

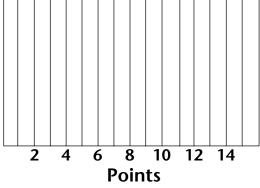
Make a key. Write a title.

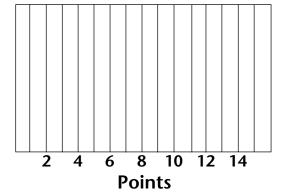
Directions Draw and shade the graphs.

1.

First qu	uarter	extra	credit
from q	uizzes	5	

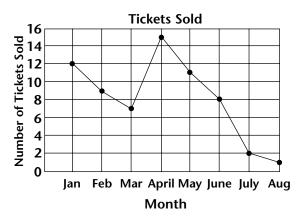

Names First Quiz Second Quiz Linda 7 7 5 Bertha 5 Larry


2.


First quarter extra credit
from quizzes

Names	First Quiz	Second Quiz				
Martha	4	2				
Kathy	4	3				
Henry	2	4				

First quarter extra credit from quizzes				
Names	First Quiz	Second Quiz		
Carl	6	5		
Jeanne	4	2		
Luke	8	4		

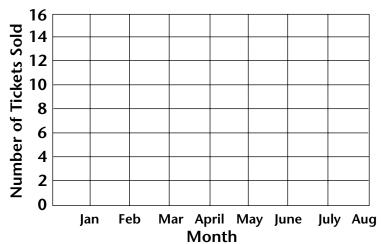


Constructing Line Graphs

EXAMPLE

Look at the data. For each month, plot the point showing the number of tickets sold each month. Draw a line from point to point.

Anna Marie's	ticket sales for the year
January	12
February	9
March	7
April	15
May	11
June	8
July	2
August	1


Directions Write titles. Construct line graphs for the

following data.

Jeanne's ticke	et sales for the year
January	14
February	10
March	16
April	7
May	9
June	10
July	2
August	8
_	

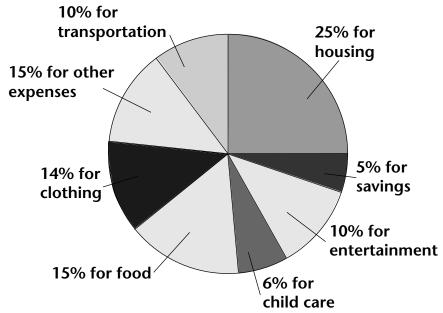
0	Ja	n	Feb	April Mont	May	June	July A
14 - 12 - 10 - 8 - 6 - 4 - 2 -							
4							
6							
0							
8							
10							
12							
14							
16							

Michael's ticket sales for the year	
January	11
February	5
March	8
April	7
May	4
June	9
July	2
August	7
_	

Reading Circle Graphs

EXAMPLE

On what do the Filsons use the most money?


Look at the graph sections.

Find the largest section.

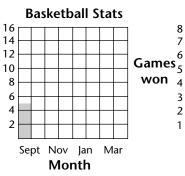
Read its label.

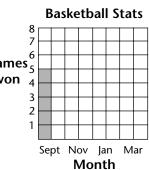
The Filsons use the most amount of money for housing.

Filson Family Expenses

Directions Use the graph. Answer the following questions.

The Filson Family income for this budget is \$39,000 per year.

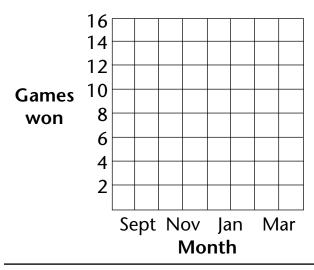

- **1.** What is the title of this graph?
- **2.** The Filsons used least amount of money on what category?
- **3.** How much money is spent on housing?
- **4.** How much money is spent on clothing?
- **5.** How much is spent on child care?
- **6.** What percent of the Filsons' income is transportation?
- **7.** Transportation and food cost how much per year?
- **8.** How much would the savings be if the income were \$40,000?

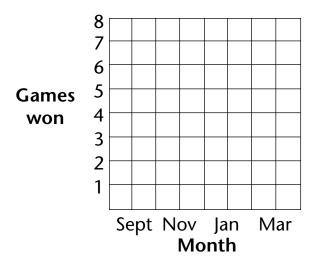

Misleading Graphs

EXAMPLE

On each graph, draw a bar showing 5 games won in September.

Find September on the graphs. Games $^{12}_{10}$ Write a title for each graph. Shade sections to show 5 games.



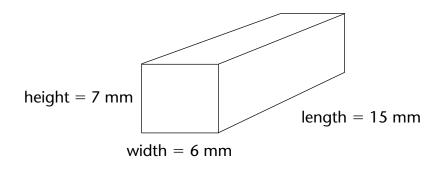


Springbrook High School Games Won Month Games won September 4 games October 2 games November 3 games December 6 games January 7 games **February** 8 games

Directions Make the bar graphs. Then answer the questions.

- **1.** Make 2 bar graphs for the data. Use the templates given below.
- **2.** Give a title for each graph.
- **3.** Why does graph 2 look better than graph 1?
- **4.** Does one graph show the data better than the other?

Scale Dimensions


EXAMPLE

The building block shown below is a scale model of a much bigger block using a 1:300 scale. How wide is the actual building block?

Set up a proportion.

$$\frac{1}{300} = \frac{6}{n}$$
$$300 \times 6 = n$$

1,800 mm = n is the width of the actual building block

Directions Use the ratios provided to solve for the actual dimensions.

1. Find the actual length and height using a 1:300 ratio.

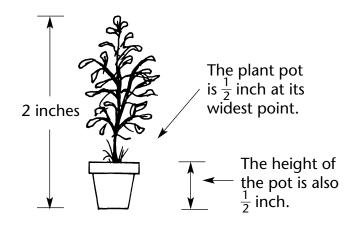
2. Solve for the three components using a ratio of 1:250.

3. Solve for the three components using a ratio of 1:75.

4. Solve for the actual width using a ratio of 1:22.

Period

Drawings to Scale


EXAMPLE

The plant measures 2 inches high. The scale ratio is 1:15. What is the actual height?

$$\frac{1}{15} = \frac{2}{n}$$
$$15 \times 2 = n$$

30 inches = n

The actual height is 30 inches.

Directions Compute the measurements for the different scale ratios.

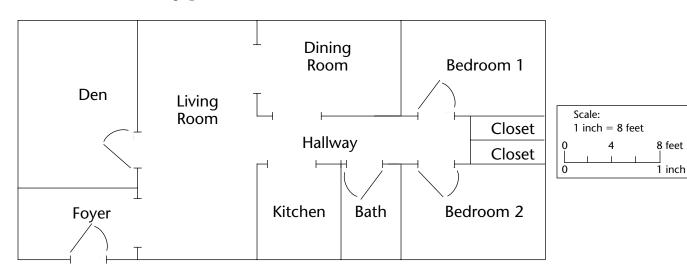
- **1.** Solve for the height of the plant using a scale ratio of 1:40.
- **2.** Use a scale ratio of 1:19 to determine the actual height of the pot.
- **3.** Use a scale ratio of 1:5 to determine the actual height of the plant.
- **4.** Use a scale ratio of 1:25 to determine the actual height of the pot.
- **5.** Solve for the width of the pot using a scale ratio of 1:10.
- **6.** Solve for the actual width of the pot using a scale ratio of 1:22.
- **7.** Solve for the actual width of the pot using a scale ratio of 1:30.
- **8.** Use a scale ratio of 1:15 to determine the actual height of the plant.

Working with Floor Plans

EXAMPLE

What is the actual width of the den?

Measure the width in inches.


Solve for length.

width =
$$1\frac{1}{4}$$
 in.

$$1\frac{1}{4} \times 8 = \text{width}$$

$$\frac{5}{4} \times 8 = 10$$
 feet actual width

Directions Use a ruler and this floor plan to answer the following questions.

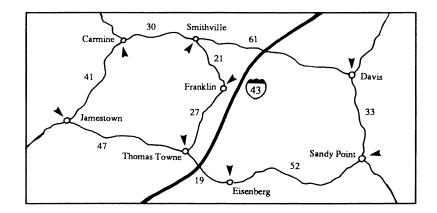
- **1.** What are the real-life dimensions of the living room?
- **2.** If you wanted to tile the kitchen with 1-square foot tiles, how many tiles would you need?
- **3.** Tile costs \$1.40 per square foot. How much will it cost to tile the kitchen?
- **4.** How many square yards would be needed to carpet the hallway?

Measuring Distances on Maps

EXAMPLE

What is the actual straight-line distance from Jamestown to Carmine?

Measure the distance.

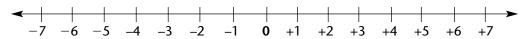

Write an equation. Solve.

1 in. \times 32 miles = straight-line distance

 $1 \times 32 = 32$

32 miles = straight-line distance

Directions Use your ruler to measure the map distance between the cities to the nearest eighth inch. Record this map distance. Then find the actual straight-line distance in miles between the cities. Record this actual distance. Finally, find the shortest road distance between the cities and record it.


Scale: 1 inch = 32 miles				
0	16	32 miles		

Cities	Map Distance (inches)	Straight Line Distance (miles)	Shortest Road Distance (miles)
1. Jamestown to Eisenberg			
2. Franklin to Thomas Towne			
3. Carmine to Davis			
4. Davis to Eisenberg			

Integers

EXAMPLES

Numbers get larger from left to right.

A number plus its opposite equals zero.

$$-3 + (+3) = 0$$

$$7 + (-7) = 0$$

$$5 + (-5) = 0$$
 $-5 + 5 = 0$

$$-5 + 5 = 0$$

Review symbols.

< means less than. 2 < 6 reads 2 is less than 6.

> means greater than. 8 > 5 reads 8 is greater than 5.

Directions Write the opposite for these numbers.

Directions Use the number line to help you compare the integers in each pair using < or >.

$$\pm 5$$

9.
$$-1$$

$$+1$$

$$-1$$

$$-1$$

$$-10$$

$$+11$$

19.
$$-5$$

$$+5$$

$$-10$$

20.
$$-7$$

$$-6$$

$$+3$$

$$-7$$

$$-4$$

Adding Integers

EXAMPLES

Name the absolute value of |-15|.

Absolute value is distance from 0.

|-15| absolute value = 15

Add the integers.

$$+14 + (-10) = 4$$

Directions Give the absolute value for each number.

Directions Find the sums.

17.
$$-7 + (+6)$$

25.
$$-11 + (-11)$$

26.
$$-21 + (-72)$$

19.
$$-2 + (-55)$$

27.
$$+10 + (-13)$$

20.
$$-4 + (-6)$$

28.
$$-11 + (-11)$$

21.
$$-10 + (-19)$$

22.
$$-12 + (-8)$$

30.
$$+81 + (-80)$$

23.
$$-7 + (+8)$$

31.
$$-8+($$

Positive and Negative Numbers

EXAMPLES

Add 2 numbers. Then add the third.

$$-15 + (+17) + (-8)$$

$$+2+(-8)$$

Subtract by adding the opposite.

$$-7 - (18)$$

$$-7 + (-18) = -25$$

Directions Find the sums.

1.
$$-6 + (+2) + (-10) =$$

2.
$$+7 + (-17) + (+10) =$$

3.
$$-7 + (-23) + (-15) =$$

4.
$$-82 + (-26) + (+34) =$$

5.
$$-29 + (+36) + (+21) =$$

6.
$$-14 + (+25) + (-76) =$$

7.
$$-28 + (-36) + (-23) =$$

8.
$$+14 + (-81) + (+31) =$$

9.
$$-42 + (+14) + (-36) =$$

10.
$$+54 + (-16) + (-26) =$$

Directions Find the answers.

14.
$$-26 - (+46) - (-14) =$$

15.
$$-25 + (-23) - (-35) =$$

16.
$$-64 - (+28) + (+52) =$$

17.
$$+36 + (-12) - (-28) =$$

18.
$$-26 - (+14) + (-12) =$$

19.
$$-32 + (-8) - (-32) =$$

15.
$$-25 + (-23) - (-35) =$$
 20. $-32 - (-19) + (+19) =$ _____

Word Problems

EXAMPLE

Write an addition problem.

Remember a number without a sign is positive.

$$16, -4, -5, +10$$
 $16 + (-4) + (-5) + (+10) = +17$

Directions Write an addition sentence for each set. Then solve.

Directions Write an addition sentence for each problem.

Then solve.

- **7.** Jacob deposited these amounts in the bank: \$21.00, \$25.50, and \$14.75. He wrote checks for \$15.00 and \$7.98. What is his balance?
- **8.** Kim and Lou had part-time jobs cutting grass. By the end of the summer, they had spent \$25.00 on gas, \$12.00 on new lawn mower blades, and \$5.95 on a wheel. They had received checks for \$20.00, \$45.00, \$17.00, and \$35.00. What was their profit after expenses?

Multiplying Numbers

EXAMPLES

The product of two numbers with like signs is positive.

$$-6(-2) = +12$$

$$+3(+9) = +27$$

The product of two numbers with unlike signs is negative.

$$-2(+6) = -12$$

$$-3(+9) = -27$$

Directions Solve for the products.

1.
$$-11(-1)$$

2.
$$-5(+10)$$

15.
$$+2(+4)(-1)(-1)$$

3.
$$-3(-4)(-2)$$

16.
$$+7(-2)(-5)$$

4.
$$-8(+2)(-1)$$

17.
$$-23(+2)(-2)$$

5.
$$-2(-3)(+4)$$

18.
$$+3(-1)(-2)(+3)$$

6.
$$-1(+1)(-1)(+1)(-1)$$

19.
$$-1(+1)(-1)(+1)(+1)$$

7.
$$+8(-1)(-2)$$

20.
$$+6(-6)(-2)(-3)$$

8.
$$-6(-7)(+3)(-4)$$

21.
$$+7(-7)(-2)(-3)$$

9.
$$-2(+4)(+4)(-2)$$

22.
$$-3(-7)(-4)(-2)$$

10.
$$+4(-5)(+3)(-4)$$

23.
$$-2(-3)(+4)(+5)$$

11.
$$-8(+2)(-1)(-2)$$

24.
$$+2(-4)(-2)(-3)$$

12.
$$-4(-5)(-6)(-1)$$

13.
$$-3(-4)$$

26.
$$-16(+2)(-1)$$

Properties of Addition and Multiplication

EXAMPLES

Commutative Property of Addition and Multiplication

$$6 + 7 = 7 + 6$$

$$-2 \times (-3) = -3 \times (-2)$$

$$13 = 13$$
 Both sums equal 13.

Both products equal 6.

Associative Property of Addition and Multiplication

$$(3+5)+6=3+(5+6)$$

$$(3+5)+6=3+(5+6)$$
 $(4\times 2)\times 3=4\times (2\times 3)$

$$8 + 6 = 3 + 11$$

$$8 \times 3 = 4 \times 6$$

Distributive Property of Multiplication with respect to Addition and Subtraction

$$2 \times (3 + 4) = 2 \times 3 + 2 \times 4$$

$$2\times(8-4)=2\times8-2\times4$$

$$2\times7 = 6+8$$

$$2 \times 4 = 16 - 8$$

$$14 = 14$$

$$8 = 8$$

Directions Express using the commutative property.

1.
$$7 \times 6 =$$

3.
$$8 + 2 =$$

2.
$$-3(+4) =$$

Directions Express using the associative property.

7.
$$(3 \times 8) \times 10 =$$

6.
$$(10 + 12) + 1 =$$

8.
$$(2 \times 18) \times 3 =$$

Directions Express using the distributive property.

9.
$$6 \times (5+3)$$

12.
$$3 \times (8-2)$$

10.
$$9 \times (4 + 2)$$

13.
$$11 \times (17 - 7)$$

11.
$$8 \times (9 + 12)$$

14.
$$6 \times (10 - 3)$$

Dividing Integers

EXAMPLES

The quotient of two numbers with like signs will be positive.

$$-20 \div (-4) = +5$$

$$+25 \div (+5) = +5$$
 Both answers are positive.

The quotient of two numbers with unlike signs will be negative.

$$+27 \div (-9) = -3$$

$$+27 \div (-9) = -3 \qquad \frac{-15}{+3} = -5 \quad \text{Both answers are negative.}$$

Directions Solve for the quotients.

1.
$$\frac{-64}{-8}$$

5.
$$\frac{-4}{-8}$$

5.
$$\frac{-4}{-8}$$
 9. $\frac{+230}{-115}$

2.
$$\frac{-44}{+11}$$
 6. $\frac{+45}{-9}$ **10.** $\frac{+5}{-25}$

6.
$$\frac{+45}{-9}$$

10.
$$\frac{+5}{-25}$$

3.
$$\frac{-100}{-10}$$

7.
$$\frac{+34}{-17}$$

3.
$$\frac{-100}{-10}$$
 7. $\frac{+34}{-17}$ **11.** $\frac{-72}{-9}$

4.
$$\frac{-144}{-12}$$

8.
$$\frac{-120}{-12}$$

4.
$$\frac{-144}{-12}$$
 8. $\frac{-120}{-12}$ **12.** $\frac{+90}{+45}$

13.
$$+63 \div (-7) =$$

13.
$$+63 \div (-7) =$$
 ______ **17.** $+63 \div (+7) =$ _____

14.
$$-26 \div (+5) =$$

14.
$$-26 \div (+5) =$$
 ______ **18.** $-12 \div (-12) =$ _____

15.
$$+120 \div (-10) =$$

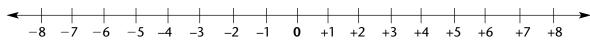
15.
$$+120 \div (-10) =$$
 ______ **19.** $-85 \div (-5) =$ _____

16.
$$+100 \div (-5) =$$

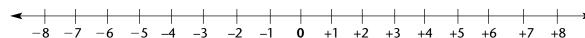
16.
$$+100 \div (-5) =$$
 ______ **20.** $+125 \div (-25) =$ _____

Variables and the Number Line

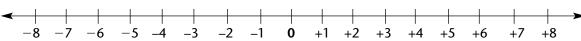
EXAMPLE

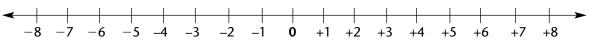

Find the number on the number line.

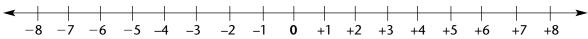
$$x = 4$$

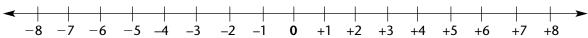


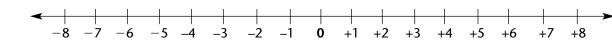
Directions Graph the values of *x* on the number lines provided.

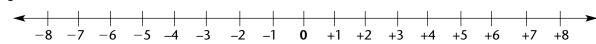

1.
$$x = -7$$


2. x = +6


3. x = +2

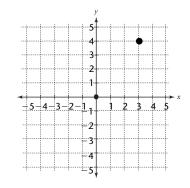

4. x = +7


5. x = +8

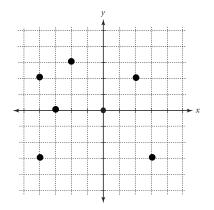

6. x = +5

7. x = +1

8. x = -1

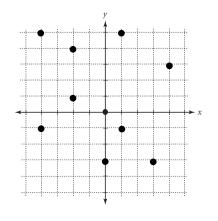


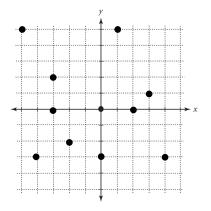
Coordinate Graphing


EXAMPLE

List the coordinates.

Number the x and y axes. Move right to find *x* coordinate. Move up to find *y* coordinate. List x coordinate first. point (3, 4)




Directions List the coordinates for each point.

Chapter 13, Lesson 10

Solving Equations Using Addition and Subtraction

EXAMPLE

$$x - 4 = +3$$

$$+4 +4$$

$$x = 7$$

Directions Solve for the variable. Show steps.

1.
$$x - 14 = -3$$

5.
$$\nu - 17 = 0$$

9.
$$3 = x - 1$$

1.
$$x - 14 = -3$$
 5. $v - 17 = 0$ **9.** $3 = x - 1$ **13.** $2 + x = -30$

2.
$$r - 22 = 6$$

6.
$$f - 1 = 11$$

2.
$$r - 22 = 6$$
 6. $f - 1 = 11$ **10.** $c - 25 = -20$ **14.** $1 = x - 12$

14.
$$1 = x - 12$$

3.
$$f - 13 = -5$$

7.
$$k + 3 = 0$$

11.
$$v-10=0$$

3.
$$f - 13 = -5$$
 7. $k + 3 = 0$ **11.** $v - 10 = 0$ **15.** $h - 27 = -25$

4.
$$v + 6 = -10$$

8.
$$25 + x = -4$$

4.
$$v + 6 = -10$$
 8. $25 + x = -4$ **12.** $v - 3 = -10$ **16.** $v + 2 = 11$

16.
$$v + 2 = 11$$

Chapter 13, Lesson 11

Working with Integers

EXAMPLES

Multiply.

$$+4 \times (-4) = -16$$

Divide.

$$-16 \div (-2)$$

$$\frac{-16}{-2} = +8$$

Solve for x.

$$2x - 6 = 16$$
$$2x = 16 + 6$$
$$2x = 22$$

$$x = 11$$

Directions Find the answers.

1.
$$+6 \times (-3) =$$

2.
$$-54 \div (-6) =$$

3.
$$+11 \times (+8) =$$

4.
$$-21 \times (-6) =$$

5.
$$+124 \div (-4) =$$

6.
$$+207 \div (+9) =$$

7.
$$-125 \div (+5) =$$

8.
$$-16 \div (-4) =$$

9.
$$+23 \times (-16) =$$

10.
$$-128 \div (+8) =$$

11.
$$+17 \times (-21) =$$

12.
$$+64 \div (-4) =$$

Directions Solve for the missing number.

13.
$$x - 11 = 14$$

19.
$$7p = -45$$

14.
$$6 + y = -12$$

20.
$$26 + n = -25$$

15.
$$7a = -56$$

21.
$$q - 16 = 28$$

16.
$$c + (-18) = -32$$
 $c =$

22.
$$25 \div t = 25$$

17.
$$x \div 6 = -25$$

23.
$$23 + z = -76$$

18.
$$14 - b = 23$$

18.
$$14 - b = 23$$
 $b =$

24.
$$9a = -207$$

Equations

EXAMPLE

Sometimes equations might appear to be turned around. Consider the equation 4x - 2 = 18. It could also be expressed as 18 = 4x - 2. You solve the equation using the same methods.

$$4x - 2 = 18 + 2 + 2$$

18 = 4x - 2

$$4x = 20$$

$$20 = 4x$$

$$\frac{4x}{4} = \frac{20}{4}$$
$$x = 5$$

$$\frac{20}{4} = \frac{4x}{4}$$

$$5 = x \text{ or } x = 5$$

Directions Solve these equations.

1.
$$14 = x + 2$$

16.
$$34 = 22 - 5x$$

2.
$$3 = -3 + a$$

17.
$$-7 = 2 + 8z$$

3.
$$5 = -4 + 5x$$

18.
$$-9 = -2 + 2x$$

4.
$$-3 = b - 1$$

19.
$$-1 = -1 + x$$

5.
$$-5 = 3 + b$$

20.
$$+13 = -3 + 2a$$

6.
$$-3 = +23 + c$$

21.
$$-3 + 5 = 5 + a$$

7.
$$13 = b - 2$$

22.
$$+10 = 4x + 2$$

8.
$$20 = 4 + a$$

23.
$$-25 = 5b + 10$$

9.
$$0 = -5 + 3a$$

24.
$$-2 - 3 = -5 + c$$

10.
$$12 = -12 + x$$

25.
$$0 = -3 + 10x$$

11.
$$10 = -3 + 6a$$

26.
$$-2 = 4 + 3z$$

12.
$$0 = 2n + 12$$

27.
$$-3 = -3 + 3x$$

13.
$$-13 = 9n + 5$$

28.
$$-3 = -3 + c$$

14.
$$10 = 5n + 2$$

29.
$$-13 = -3 + 2a$$

15.
$$-1 = +1 + z$$

30.
$$-4 + 4 = 5 + 4a$$

Chapter 13, Lesson 13

Combining Like Terms

EXAMPLE

Add to combine the like terms.

$$-2x - 18y - 4x + 10y$$
$$-2x + (-4x) = -6x$$
$$-18y + 10y = -8y$$

Directions Combine like terms.

-6x - 8y

1.
$$+3a - 4a + 5 + 6$$

6.
$$-2a + 8a - a - 1 - 2$$
 11. $-c + c - 12y - 8c$

11.
$$-c + c - 12y - 8c$$

2.
$$+10a - 10a - 3 + 4$$

2.
$$+10a - 10a - 3 + 4$$
 7. $-8 - 5f + 17f + 4 - 1$ **12.** $-3 + 8 - x - x$

12.
$$-3 + 8 - x - x$$

3.
$$+2a - 8c - 9c + 10a$$

8.
$$2a - 8 - 2a + 4c - 9c$$
 13. $+w + 2w + 2x - c$

13.
$$+w + 2w + 2x - c$$

4.
$$-3x + 2x + 4x + 10$$

9.
$$+2x - 3x + 2 + 3x$$

9.
$$+2x - 3x + 2 + 3x$$
 14. $-5 - 8 + 2 - 3a - 5a$

5.
$$-2a - 3a + 8a - 2$$

10.
$$+14x - 10x + 4 - 2$$
 15. $-2a + 3a - 3c + 5$

15.
$$-2a + 3a - 3c + 5$$